
Arbitrum Nitro
Security Assessment

October 10, 2022

Prepared for:

Harry Kalodner, Steven Goldfeder, and Ed Felten

Offchain Labs

Prepared by: Nat Chin, Gustavo Grieco, and Simone Monica

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 80+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Arbitrum Nitro Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Offchain
Labs under the terms of the project statement of work and has been made public at
Offchain Labs’s request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Arbitrum Nitro Security Assessment
PUBLIC

Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 5

Project Summary 7

Project Goals 8

Project Targets 9

Project Coverage 10

Automated Testing 13

Codebase Maturity Evaluation 15

Summary of Findings 17

Detailed Findings 19

1. Incorrect parsing of message data header 19

2. Incorrect gasLimit parsing 20

3. Extra computation associated with NUMBER and BLOCKHASH opcodes extends
block-creation time 22

4. Incorrect updates to the L2 pricing model 24

5. Vulnerable package dependencies 26

6. L1 pricing model’s susceptibility to manipulation 28

7. Use of costly hash function with batched messages 30

8. Fragile batched message parsing 32

9. Insufficient testing of HashProofHelper and NitroMigrator 35

10. Manual deployment process 36

Trail of Bits 3 Arbitrum Nitro Security Assessment
PUBLIC

11. Outdated package dependencies 37

12. Lack of events for critical SequencerInbox operations 38

13. Incorrect migration of retryables 40

14. Migration code does not scale to accommodate a large number of validators or
outboxes 42

15. Serialization of large JSON integers could result in interoperability issues 45

16. Validators are not compensated for executing the migration 47

17. Risk of a node crash during parsing of DAS sequencer messages 48

18. Possible bypass of DACert expiration 50

Summary of Recommendations 52

A. Vulnerability Categories 53

B. Code Maturity Categories 55

C. Risks Associated with Malicious Sequencers 57

D. Recommendations for Fuzzing ArbOS 59

E. Echidna Invariant Test for HashProofHelper 62

F. Code Quality Recommendations 64

G. Nitro Migration Plan Recommendations 66

Trail of Bits 4 Arbitrum Nitro Security Assessment
PUBLIC

Executive Summary

Engagement Overview
Offchain Labs engaged Trail of Bits to review the security of its Arbitrum Nitro system. From
July 5 to August 19, 2022, a team of three consultants conducted a security review of the
client-provided source code, with sixteen person-weeks of effort. Details of the project’s
timeline, test targets, and coverage are provided in subsequent sections of this report.

Project Scope
Our testing efforts were focused on the identification of flaws that could result in the
compromise of a smart contract, a loss of funds, or unexpected behavior in the target
system. We conducted this audit with full knowledge of the target system, including access
to the source code and documentation. We performed dynamic testing of the target
system, using both automated and manual processes.

Summary of Findings
The audit uncovered significant flaws that could result in unexpected behavior. A summary
of the findings and details on notable findings are provided below.

EXPOSURE ANALYSIS

Severity Count

High 3

Medium 2

Low 8

Informational 4

Undetermined 1

CATEGORY BREAKDOWN

Category Count

Auditing and Logging 1

Configuration 2

Data Validation 5

Patching 2

Testing 1

Undefined Behavior 7

Trail of Bits 5 Arbitrum Nitro Security Assessment
PUBLIC

Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

● Risk of panics resulting in message-processing interruptions
(TOB-ArbOS-1, TOB-ArbOS-17)
We identified two scenarios that could cause ArbOS to panic when processing inbox
messages and messages that include AnyTrust Data Availability Certificates. Panics
in these situations would result in a denial of service on the chain.

● Longer-than-expected block-creation time (TOB-ArbOS-3)
The computation involved in the retrieval of values used by the NUMBER and
BLOCKHASH opcodes takes longer than expected.

● Insu�cient testing (TOB-ArbOS-4)
An incorrect calculation performed during the unpacking of internal transaction
data causes the layer 2 pricing model to generate incorrect results.

● Risk of unexpected behavior caused by the Classic–Nitro Migration
(TOB-ArbOS-13)
Users may lose the funds associated with a retryable ticket that expires during the
migration from Arbitrum Classic to Nitro.

Trail of Bits 6 Arbitrum Nitro Security Assessment
PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Mary O’Brien, Project Manager
dan@trailofbits.com mary.obrien@trailofbits.com

The following engineers were associated with this project:

Gustavo Grieco, Consultant Nat Chin, Consultant
gustavo.grieco@trailofbits.com natalie.chin@trailofbits.com

Simone Monica, Consultant
simone.monica@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

June 30, 2022 Pre-project kickoff call

July 11, 2022 Status update meeting #1

July 18, 2022 Status update meeting #2

July 25, 2022 Status update meeting #3

August 2, 2022 Status update meeting #4

August 8, 2022 Status update meeting #5

August 15, 2022 Status update meeting #6

August 22, 2022 Delivery of report draft; report readout meeting

October 10, 2022 Delivery of final report

Trail of Bits 7 Arbitrum Nitro Security Assessment
PUBLIC

mailto:dan@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of Arbitrum Nitro.
Specifically, we sought to answer the following non-exhaustive list of questions:

● Does the code responsible for the migration from Arbitrum Classic to Arbitrum Nitro
behave as expected?

● Will tickets that are redeemable in Arbitrum Classic be redeemable in Arbitrum
Nitro?

● Are there appropriate access controls throughout the system?

● Could a participant perform a denial-of-service or spam attack against any of the
components?

● Are incoming arguments validated and parsed correctly?

● Are the gas costs of the layer 1 (L1) and layer 2 (L2) opcodes appropriate?

● Could any of the on-chain components be manipulated by the sequencer, a
validator, or any other user?

We also sought to answer the following questions regarding ArbOS:

● Does the ArbOS EVM implementation adhere to the behavior described in the
Yellow Paper? If it deviates from that behavior, how do the deviations affect the
correctness and security of the smart contracts deployed on Arbitrum?

● Are incoming messages properly parsed, validated, and processed?

● Is the ArbOS bookkeeping correct and updated when necessary? Is there any effect
from its internal state that is not properly committed or reverted?

Trail of Bits 8 Arbitrum Nitro Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the following targets.

nitro/arbos

Repository https://github.com/OffchainLabs/nitro

Version 861ba3ca52b112eb545d23a4c3332c8df7d192ee

Type Go

Platform L2 operating system

nitro/contracts

Repository https://github.com/OffchainLabs/nitro

Version cc7bd52a5ba27087a86161073f272d1f79fefa0b

Type Solidity

Platform Ethereum

arbitrum

Repository https://github.com/OffchainLabs/arbitrum

Version 9b0b581a97c15daa51fe6b3587c216dedc99d406

Types Solidity, C++, and Go

Platform Ethereum

Trail of Bits 9 Arbitrum Nitro Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro
https://github.com/OffchainLabs/nitro
https://github.com/OffchainLabs/arbitrum/blob/9b0b581a97c15daa51fe6b3587c216dedc99d406/packages/arb-bridge-eth/contracts/bridge/NitroMigrator.sol

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches and their results include the following:

Ethereum Smart Contracts
The Arbitrum Nitro system includes Ethereum smart contracts that manage and secure a
rollup chain on L1. The most relevant contracts are listed below.

Inbox. The Inbox contract allows users to send messages to ArbOS. We reviewed the
inbox’s receipt of L2 messages, focusing on the impact that user-controlled input can have
on the entire system. We manually reviewed the construction, validation, and delivery of
messages.

SequencerInbox and Bridge. The Bridge contract executes cross-chain transactions
sent from L2, and the SequencerInbox controls the inclusion of messages in the ArbOS
inbox. We focused on the changes made since the last audit (which concluded in March
2022) and reviewed the contracts’ interactions with ArbOS.

HashProofHelper. The HashProofHelper contract, which is part of the one-step-proof
implementation, makes it possible to prove a preimage that is larger than the maximum
data size. Our review of this contract focused on identifying flaws in its implementation.

NitroMigrator. This contract was implemented to enable the migration from Arbitrum
Classic to Arbitrum Nitro by transferring ownership of the Classic contracts and pointing
the system to the newly deployed contract versions. We focused on determining whether
the state of the Classic or Nitro chain could be disrupted during or after the migration and
whether external attackers could delay or block the migration.

ArbOS
ArbOS is the trusted L2 operating system. It isolates untrusted contracts from each other,
tracks and limits their resource usage, and manages the mechanism that collects fees from
users to fund the operation of a chain's validators.

ArbOS handles trusted and untrusted messages originating from Ethereum. We reviewed
the handling of incoming messages and the flow of assets. Our review of the escrow
mechanism, which allows certain assets to be saved in order to be collected or burned
later, focused on how ether is handled and how gas is tracked and burned.

We also reviewed the translation of the EVM state, the L1 and L2 pricing models, and the
changes made to the gas costs of the EVM opcodes used in Arbitrum Nitro. We looked for
ways to disrupt or break the processing of blocks or the gas accounting.

Trail of Bits 10 Arbitrum Nitro Security Assessment
PUBLIC

Additionally, we looked for unexpected error conditions that could break important ArbOS
security or correctness properties. We checked whether ArbOS could be forced to loop or
to consume an excessive amount of resources when processing new incoming messages
from L1.

We also analyzed the migration-related code, reviewing the process of exporting and then
reimporting data and the effects of Arbitrum Classic’s state on the correctness and security
of Arbitrum Nitro.

Finally, we reviewed the special ArbOS smart contract operations that allow privileged and
unprivileged users to perform important tasks in the Arbitrum system. In particular, we
analyzed how retryable tickets are redeemed and canceled and how they are removed
when they expire.

AnyTrust
AnyTrust is a variant of Arbitrum Nitro in which data is stored by a Data Availability
Committee (DAC) and provided on demand rather than posted on L1 Ethereum as calldata.
AnyTrust reduces transaction gas costs by making it possible to store data off-chain and
assuming that at least two members of the DAC are honest and will make that data
available to other parties. We performed a partial review of the differences between
AnyTrust and Arbitrum Nitro, focusing on the L2 code’s validation of Data Availability
Certificates.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● The validator code

● Cryptographic primitives

● The zeroheavy encoder / decoder

● The Brotli encoder / decoder

● The geth codebase (with the exception of specific changes made by Offchain Labs)

● The arbitrator and prover code

● The Data Availability Server software run by committee members in AnyTrust mode

Trail of Bits 11 Arbitrum Nitro Security Assessment
PUBLIC

Our review of the other smart contracts in the codebase covered only the bridge contracts
(specifically the post-migration changes to their interactions with ArbOS).

Additionally, the codebase underwent several changes during the audit, which made the
review more complex than expected.

Trail of Bits 12 Arbitrum Nitro Security Assessment
PUBLIC

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

Tool Description Policy

Slither A static analysis framework that can statically verify
algebraic relationships between Solidity variables

Used to detect
common issues

Echidna A smart contract fuzzer that can rapidly test security
properties via malicious, coverage-guided test case
generation

Appendix E

Native Go
fuzz

A smart fuzzer for Go code implemented in the standard
toolchain as of Go 1.18

Appendix D

Test Results
We used Echidna to test the following cryptographic properties of the HashProofHelper
component.

Property Tool Result

The proveWithFullPreimage and
proveWithSplitPreimage functions never revert.

Echidna Passed

When passed the same input, the proveWithFullPreimage
and proveWithSplitPreimage functions compute the same
fullHash value.

Echidna Passed

Trail of Bits 13 Arbitrum Nitro Security Assessment
PUBLIC

https://github.com/trailofbits/slither
https://github.com/trailofbits/echidna
https://go.dev/doc/fuzz/
https://go.dev/doc/fuzz/

When passed the same input, the proveWithFullPreimage
and proveWithSplitPreimage functions compute the same
part of the preimage, with a length of less than 32 bytes.

Echidna Passed

Trail of Bits 14 Arbitrum Nitro Security Assessment
PUBLIC

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic Having conducted a manual review and an extensive
fuzzing campaign, we believe that the arithmetic
operations throughout the codebase are performed
correctly; the sole exception is an operation that could
cause an integer overflow in the validation of an AnyTrust
Data Availability Certificate (TOB-ArbOS-18).

Satisfactory

Auditing Certain critical administrative functions do not emit
events for important state changes (TOB-ArbOS-12). This
makes off-chain monitoring difficult to conduct.
Additionally, Offchain Labs did not provide an incident
response plan.

Moderate

Authentication /
Access Controls

We did not identify any authentication or access control
issues. The privileges granted to various actors and the
limits on those privileges are generally well documented.

Satisfactory

Complexity
Management

Most of the functions and contracts are organized and
scoped appropriately and contain inline documentation
that explains their workings. However, the state export
code implemented to facilitate the migration process is
complex with little inline documentation.

Satisfactory

Decentralization The Arbitrum Nitro system is as highly centralized as
Arbitrum Classic, as it relies on a small number of
whitelisted validators and a sole chain owner. The
Offchain Labs team should implement tests related to
the ownership roles that cover both happy and unhappy
paths. Additional documentation regarding deployment

Weak

Trail of Bits 15 Arbitrum Nitro Security Assessment
PUBLIC

and ownership risks would also be beneficial.

Documentation The Nitro documentation provided by Offchain Labs is
generally sufficient, though it lacks detail on recently
implemented components such as the
HashProofHelper and the state export / import code.

Moderate

Front-Running
Resistance

Nitro relies on the go-ethereum codebase to process
and execute EVM transactions and therefore suffers from
the same lack of protections regarding transaction
front-running.

Moderate

Low-Level
Manipulation

All code reviewed during the engagement was high-level. Not
Applicable

Testing and
Verification

The Offchain Labs team has implemented robust testing
of most of the components, including fuzz testing based
on advanced techniques such as differential fuzzing.
However, the testing of recently implemented
components such as the HashProofHelper and the
export / import code should be expanded to cover
expected and unexpected code paths.

Moderate

Trail of Bits 16 Arbitrum Nitro Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Incorrect parsing of message data header Data Validation Medium

2 Incorrect gasLimit parsing Data Validation Informational

3 Extra computation associated with NUMBER and
BLOCKHASH opcodes extends block-creation time

Configuration High

4 Incorrect updates to the L2 pricing model Undefined
Behavior

High

5 Vulnerable package dependencies Patching Undetermined

6 L1 pricing model’s susceptibility to manipulation Undefined
Behavior

Informational

7 Use of costly hash function with batched
messages

Undefined
Behavior

Low

8 Fragile batched message parsing Undefined
Behavior

Low

9 Insufficient testing of HashProofHelper and
NitroMigrator

Testing Low

10 Manual deployment process Configuration Low

11 Outdated package dependencies Patching Low

12 Lack of events for critical SequencerInbox
operations

Auditing and
Logging

Low

Trail of Bits 17 Arbitrum Nitro Security Assessment
PUBLIC

13 Incorrect migration of retryables Undefined
Behavior

Medium

14 Migration code does not scale to accommodate a
large number of validators or outboxes

Data Validation Informational

15 Serialization of large JSON integers could result in
interoperability issues

Undefined
Behavior

Low

16 Validators are not compensated for executing the
migration

Undefined
Behavior

Low

17 Risk of a node crash during parsing of DAS
sequencer messages

Data Validation High

18 Possible bypass of DACert expiration Data Validation Informational

Trail of Bits 18 Arbitrum Nitro Security Assessment
PUBLIC

Detailed Findings

1. Incorrect parsing of message data header

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-ArbOS-1

Target: arbstate/inbox.go

Description
ArbOS parses and validates L2 messages, including compressed messages. The first
segment of a compressed message represents the kind of the message, while the rest
contain the message. However, ArbOS parses the first segment incorrectly, which could
cause a panic that halts the inbox’s processing.

func (r *inboxMultiplexer) getNextMsg() (*MessageWithMetadata, error) {
...
kind := segment[0]
segment = segment[1:]
var msg *MessageWithMetadata
if kind == BatchSegmentKindL2Message || kind ==

BatchSegmentKindL2MessageBrotli {

if kind == BatchSegmentKindL2MessageBrotli {
decompressed, err := arbcompress.Decompress(segment[1:],

arbos.MaxL2MessageSize)
...

}

Figure 1.1: Part of the getNextMsg function in arbstate/inbox.go

Specifically, ArbOS discards the first segment twice. If there are too few remaining
segments, the code will panic.

Exploit Scenario
Eve sends a malformed compressed message, which causes a panic in ArbOS.

Recommendations
Short term, properly validate the length of segments and the content of inbox messages.

Long term, use fuzzing to detect input validation issues early in the development process.

Trail of Bits 19 Arbitrum Nitro Security Assessment
PUBLIC

2. Incorrect gasLimit parsing

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-ArbOS-2

Target: arbos/incomingmessage.go

Description
When ArbOS parses incoming L1 messages of the UnsignedTx type, it validates the
gasLimit value incorrectly.

The parseUnsignedTx function, which parses incoming values, casts the gasLimit to a
uint64 value; however, if the gasLimit value cannot be represented by a uint64, the
parsing will result in undefined behavior.

func parseUnsignedTx(rd io.Reader, poster common.Address, requestId *common.Hash, chainId
*big.Int, txKind byte) (*types.Transaction, error) {

gasLimit, err := util.HashFromReader(rd)
if err != nil {

return nil, err
}
...
switch txKind {
case L2MessageKind_UnsignedUserTx:

inner = &types.ArbitrumUnsignedTx{
...
Gas: gasLimit.Big().Uint64(),
...

}
case L2MessageKind_ContractTx:

if requestId == nil {
return nil, errors.New("cannot issue contract tx without L1

request id")
}
inner = &types.ArbitrumContractTx{

...
Gas: gasLimit.Big().Uint64(),
...

}
...

Figure 2.1: Part of the parseUnsignedTx function in arbos/incomingmessage.go

Trail of Bits 20 Arbitrum Nitro Security Assessment
PUBLIC

Exploit Scenario
Alice, a user, wants to run an L2 transaction with all of the available gas. Thus, she sets the
gasLimit value to type(uint256).max, which results in undefined behavior when the
transaction is parsed.

Recommendations
Short term, have the parseUnsignedTx function validate that the gasLimit value can fit
into a uint64 and return an error if it cannot.

Long term, implement validation of every value cast from one type to another to ensure
that it is within the range of acceptable values for the destination type.

Trail of Bits 21 Arbitrum Nitro Security Assessment
PUBLIC

3. Extra computation associated with NUMBER and BLOCKHASH opcodes
extends block-creation time

Severity: High Difficulty: Low

Type: Configuration Finding ID: TOB-ArbOS-3

Target: arbos/tx_processor.go

Description
Arbitrum is instrumented with a small number of EVM opcodes, including NUMBER and
BLOCKHASH. The L1BlockHash and L1BlockNumber functions retrieve the
NextBlockNumber and BlockHash values used by the opcodes from the ArbOS state. This
process takes longer in the Arbitrum system than it does in the original geth
implementation. As a result, block creation can take up to several seconds.

func (p *TxProcessor) L1BlockNumber(blockCtx vm.BlockContext) (uint64, error) {
tracingInfo := util.NewTracingInfo(p.evm, p.msg.From(), arbosAddress,

util.TracingDuringEVM)
state, err := arbosState.OpenSystemArbosState(p.evm.StateDB, tracingInfo,

false)
if err != nil {

return 0, err
}
return state.Blockhashes().NextBlockNumber()

}

func (p *TxProcessor) L1BlockHash(blockCtx vm.BlockContext, l1BlockNumber uint64)
(common.Hash, error) {

tracingInfo := util.NewTracingInfo(p.evm, p.msg.From(), arbosAddress,
util.TracingDuringEVM)

state, err := arbosState.OpenSystemArbosState(p.evm.StateDB, tracingInfo,
false)

if err != nil {
return common.Hash{}, err

}
return state.Blockhashes().BlockHash(l1BlockNumber)

}

Figure 3.1: The L1BlockHash and L1BlockNumber functions in
arbos/incomingmessage.go

However, the gas costs of these opcodes have not been changed, which means that they
are underpriced.

Trail of Bits 22 Arbitrum Nitro Security Assessment
PUBLIC

Exploit Scenario
Eve runs a transaction that executes the BLOCKHASH and NUMBER opcodes numerous
times, with the goal of causing a denial of service. Her transaction adds several seconds to
the block-production process and thus degrades the system’s performance, which affects
other users’ experience.

Recommendations
Short term, save a local copy of the NextBlockNumber and BlockHash values to avoid
needing to retrieve the variables directly from the ArbOS state.

Long term, implement fuzz tests throughout the codebase to ensure that block creation
takes a reasonable amount of time.

Trail of Bits 23 Arbitrum Nitro Security Assessment
PUBLIC

4. Incorrect updates to the L2 pricing model

Severity: High Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ArbOS-4

Target: arbos/internal_tx.go

Description
One of the calculations performed during the unpacking of internal transaction data is
incorrect. The result of this calculation directly affects the L2 pricing model, which means
that the pricing model is also incorrect.

The InternalTxStartBlock function uses the util.PackInternalTxDataStartBlock
function, passing in the L1 base fee and block number, the L2 block number, and the
amount of time that has passed since the last block (timePassed).

func InternalTxStartBlock(
chainId,
l1BaseFee *big.Int,
l1BlockNum uint64,
header,
lastHeader *types.Header,

) *types.ArbitrumInternalTx {

l2BlockNum := header.Number.Uint64()
timePassed := header.Time - lastHeader.Time

if l1BaseFee == nil {
l1BaseFee = big.NewInt(0)

}
data, err := util.PackInternalTxDataStartBlock(l1BaseFee, l1BlockNum,

l2BlockNum, timePassed)
if err != nil {

panic(fmt.Sprintf("Failed to pack internal tx %v", err))
}
return &types.ArbitrumInternalTx{

ChainId: chainId,
Data: data,

}
}

Figure 4.1: The InternalTxStartBlock function in arbos/internal_tx.go

The data is then unpacked in the ApplyInternalTxUpdate function:

Trail of Bits 24 Arbitrum Nitro Security Assessment
PUBLIC

func ApplyInternalTxUpdate(tx *types.ArbitrumInternalTx, state
*arbosState.ArbosState, evm *vm.EVM) {

switch *(*[4]byte)(tx.Data[:4]) {
case InternalTxStartBlockMethodID:

inputs, err := util.UnpackInternalTxDataStartBlock(tx.Data)
if err != nil {

panic(err)
}
l1BlockNumber, _ := inputs[1].(uint64) // current block's
timePassed, _ := inputs[2].(uint64) // since last block

…

Figure 4.2: The header of the ApplyInternalTxUpdate function in arbos/internal_tx.go

However, the ApplyInternalTxUpdate function assumes that timePassed is the third
argument passed to util.PackInternalTxDataStartBlock, when it is actually the
fourth.

Exploit Scenario
A new block is created, and the ApplyInternalTxUpdate function is executed. The
incorrect timePassed value calculated by the function is then used in the creation of new
L2 blocks, directly affecting the L2 pricing state (and thus the pricing model).

Recommendations
Short term, adjust the ApplyInternalTxUpdate function to use the correct index,
input[3], for the timePassed variable.

Long term, implement unit and fuzz tests throughout the codebase to ensure that its
functions use the expected arguments.

Trail of Bits 25 Arbitrum Nitro Security Assessment
PUBLIC

5. Vulnerable package dependencies

Severity: Undetermined Difficulty: Low

Type: Patching Finding ID: TOB-ArbOS-5

Target: Throughout the codebase

Description
Although dependency scans did not yield a direct threat to the project under review, go
list -json -m all | nancy sleuth identified dependencies with known
vulnerabilities. Due to the sensitivity of the deployment code and its environment, it is
important to ensure dependencies are not malicious. Problems with dependencies in the
JavaScript community could have a significant effect on the repositories under review. The
output below details these issues.

CVE ID Description Dependency

sonatype-2021-36
19

Integer Overflow or Wraparound github.com/hashico
rp/vault

sonatype-2019-07
72

Improper Neutralization of Input
During Web Page Generation

('Cross-site Scripting')

github.com/influxd
ata/influxdb

CVE-2022-21698 Uncontrolled Resource
Consumption ('Resource

Exhaustion')

github.com/prometh
eus/client_golang

Figure 5.1: Advisories affecting Arbitrum dependencies

Additionally, yarn audit identified vulnerabilities affecting dependencies of the smart
contracts:

Trail of Bits 26 Arbitrum Nitro Security Assessment
PUBLIC

https://ossindex.sonatype.org/vulnerability/sonatype-2021-3619
https://ossindex.sonatype.org/vulnerability/sonatype-2021-3619
https://ossindex.sonatype.org/vulnerability/sonatype-2019-0772
https://ossindex.sonatype.org/vulnerability/sonatype-2019-0772
https://ossindex.sonatype.org/vulnerability/CVE-2022-21698?component-type=golang&component-name=github.com%2Fprometheus%2Fclient_golang&utm_source=nancy-client&utm_medium=integration&utm_content=1.0.37

CVE ID Description Dependency

CVE-2021-23358 Arbitrary Code Execution in
underscore

ethereum-waffle

CVE-2022-0235 node-fetch is vulnerable to
Exposure of Sensitive

Information to an Unauthorized
Actor

node-fetch

CVE-2022-31172 OpenZeppelin Contracts's [sic]
SignatureChecker may revert on

invalid EIP-1271 signers

@openzeppelin/cont
racts,

@openzeppelin/cont
racts-upgradeable

CVE-2021-43138 Prototype pollution in async async

Figure 5.2: Advisories affecting Arbitrum contract dependencies

Exploit Scenario
Alice installs the dependencies of an in-scope repository on a clean machine. Unbeknownst
to Alice, a dependency of the project has become malicious or exploitable. Alice
subsequently uses the dependency, disclosing sensitive information to an unknown actor.

Recommendations
Short term, ensure dependencies are up to date. Several node modules have been
documented as malicious because they execute malicious code when installing
dependencies to projects. Keep modules current and verify their integrity after installation.

Long term, consider integrating automated dependency auditing into the development
workflow. If a dependency cannot be updated when a vulnerability is disclosed, ensure the
code does not use and is not affected by the vulnerable functionality of the dependency.

Trail of Bits 27 Arbitrum Nitro Security Assessment
PUBLIC

https://github.com/advisories/GHSA-cf4h-3jhx-xvhq
https://github.com/advisories/GHSA-r683-j2x4-v87g
https://github.com/advisories/GHSA-4g63-c64m-25w9
https://github.com/advisories/GHSA-fwr7-v2mv-hh25

6. L1 pricing model’s susceptibility to manipulation

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-ArbOS-6

Target: arbos/l1pricing/l1pricing.go

Description
The L1 pricing model relies on an account balance that is susceptible to manipulation.

When computing L1 prices, the UpdateForBatchPosterSpending function reads the
balance of L1PricerFundsPoolAddress and computes the amount of funds to be
distributed to batch posters:

func (ps *L1PricingState) UpdateForBatchPosterSpending(
statedb vm.StateDB,
evm *vm.EVM,
arbosVersion uint64,
updateTime, currentTime uint64,
batchPoster common.Address,
weiSpent *big.Int,
scenario util.TracingScenario,

) error {
...
oldSurplus := am.BigSub(statedb.GetBalance(L1PricerFundsPoolAddress),

am.BigAdd(totalFundsDue, fundsDueForRewards))

...

// allocate funds to this update
collectedSinceUpdate := statedb.GetBalance(L1PricerFundsPoolAddress)
availableFunds := am.BigDivByUint(am.BigMulByUint(collectedSinceUpdate,

allocationNumerator), allocationDenominator)

...
err = util.TransferBalance(

&L1PricerFundsPoolAddress, &payRewardsTo, paymentForRewards, evm,
scenario, "batchPosterReward",

)
...
for _, posterAddr := range allPosterAddrs {

...
err = util.TransferBalance(

&L1PricerFundsPoolAddress, &addrToPay, balanceToTransfer,
evm, scenario, "batchPosterRefund",

Trail of Bits 28 Arbitrum Nitro Security Assessment
PUBLIC

)
...

}

Figure 6.1: Part of the UpdateForBatchPosterSpending function in
arbos/l1pricing/l1pricing.go

The base fee amount depends on the balance of the L1PricerFundsPoolAddress
account. Thus, by donating ether to that account, a user could manipulate the base fee
amount. Moreover, there are two transfers of rewards from the
L1PricerFundsPoolAddress account before the check of its balance and the
computation of the values that determine L1 prices. In theory, the destination of these
reward transfers could be the L1PricerFundsPoolAddress itself. However, self-transfers
would not change the balance of L1PricerFundsPoolAddress, and the result of the price
computation would be incorrect

Exploit Scenario
Eve repeatedly transfers ether to the address of the L1PricerFundsPoolAddress
account to secretly manipulate the L1 fee amount. She then stops making these transfers,
triggering an increase in the overall fee amount. In doing so, Eve manipulates other users
of the platform, as the fee increase discourages other users from interacting with it.

Recommendations
Short term, ensure that users are aware of the pricing model’s susceptibility to
manipulation. Additionally, to prevent incorrect price computations, disallow self-transfers
to L1PricerFundsPoolAddress.

Long term, implement unit and fuzz tests throughout the codebase to ensure that the
pricing model behaves as expected.

Trail of Bits 29 Arbitrum Nitro Security Assessment
PUBLIC

7. Use of costly hash function with batched messages

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ArbOS-7

Target: inbox.sol, arbos/incomingmessage.go

Description
The use of batched messages requires the use of keccak256, which is costly and can thus
cause a denial of service.

Any user can submit L2 messages through the inbox.sol smart contract. To do so, the
user pays only the cost of submitting the data on-chain and executing keccak256 to hash
the data.

function _deliverMessage(
uint8 _kind,
address _sender,
bytes memory _messageData

) internal returns (uint256) {
if (_messageData.length > MAX_DATA_SIZE)

revert DataTooLarge(_messageData.length, MAX_DATA_SIZE);
uint256 msgNum = deliverToBridge(_kind, _sender, keccak256(_messageData));
emit InboxMessageDelivered(msgNum, _messageData);
return msgNum;

}

Figure 7.1: The _deliverMessage function in inbox.sol

Once an L2 message is on the chain, ArbOS parses and processes it. Figure 7.2 shows the
parsing of batched L2 messages, which can require a significant amount of computation:

func parseL2Message(rd io.Reader, poster common.Address, requestId *common.Hash,
chainId *big.Int, depth int) (types.Transactions, error) {

...
case L2MessageKind_Batch:

if depth >= 16 {
return nil, errors.New("L2 message batches have a max depth

of 16")
}
segments := make(types.Transactions, 0)
index := big.NewInt(0)
for {

nextMsg, err := util.BytestringFromReader(rd,

Trail of Bits 30 Arbitrum Nitro Security Assessment
PUBLIC

MaxL2MessageSize)
if err != nil {

// an error here means there are no further messages
in the batch

// nolint:nilerr
return segments, nil

}

var nextRequestId *common.Hash
if requestId != nil {

subRequestId := crypto.Keccak256Hash(requestId[:],
math.U256Bytes(index))

nextRequestId = &subRequestId
}
nestedSegments, err :=

parseL2Message(bytes.NewReader(nextMsg), poster, nextRequestId, chainId, depth+1)
if err != nil {

return nil, err
}
segments = append(segments, nestedSegments...)
index.Add(index, big.NewInt(1))

}

Figure 7.2: Part of the parseL2Message function in arbos/incomingmessage.go

Specifically, the parsing of each message in a batch of messages involves a call to
keccak256 from the geth code. The gas cost of the on-chain use of keccak256 (which is
paid by the user) is computed only once, so the user incurs a total cost of 30 units of gas,
plus 6 units of gas for each word of input data (rounded up). However, when parsing
batched messages, ArbOS incurs a cost of ~36 units of gas for each keccak256 call. Thus,
for the cost of only a single keccak256 transaction, an attacker could cause ArbOS to incur
such a high cost that it experienced a denial of service.

Exploit Scenario
Eve crafts a series of large L2 messages that includes several batched messages. Each time
a message in the batch is parsed, there is a call to keccak256. The cost of these calls is
paid by validators, degrading their performance.

Recommendations
Short term, ensure that the cost of submitting batched messages is commensurate with
the amount of work involved in parsing them.

Long term, review the use of costly operations such as keccak256 calls to identify any
denial-of-service attack vectors.

Trail of Bits 31 Arbitrum Nitro Security Assessment
PUBLIC

8. Fragile batched message parsing

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ArbOS-8

Target: go-ethereum/core/state_transition.go

Description
Each transaction in a batch of messages has a corresponding nonce. The transactions’
nonces must be in consecutive order, and if one of the nonces is flagged as invalid, all of
the transactions will fail.

Figure 8.1 shows the parsing of batched L2 messages:

func parseL2Message(rd io.Reader, poster common.Address, requestId *common.Hash,
chainId *big.Int, depth int) (types.Transactions, error) {

...
case L2MessageKind_Batch:

if depth >= 16 {
return nil, errors.New("L2 message batches have a max depth

of 16")
}
segments := make(types.Transactions, 0)
index := big.NewInt(0)
for {

nextMsg, err := util.BytestringFromReader(rd,
MaxL2MessageSize)

if err != nil {
// an error here means there are no further messages

in the batch
// nolint:nilerr
return segments, nil

}

var nextRequestId *common.Hash
if requestId != nil {

subRequestId := crypto.Keccak256Hash(requestId[:],
math.U256Bytes(index))

nextRequestId = &subRequestId
}
nestedSegments, err :=

parseL2Message(bytes.NewReader(nextMsg), poster, nextRequestId, chainId, depth+1)
if err != nil {

return nil, err
}

Trail of Bits 32 Arbitrum Nitro Security Assessment
PUBLIC

segments = append(segments, nestedSegments...)
index.Add(index, big.NewInt(1))

}

Figure 8.1: Part of the parseL2Message function in arbos/incomingmessage.go

Because the transactions are executed by the geth code, they are validated through all of
the standard Ethereum transaction checks. If one of the nonces is incorrect, the
corresponding transaction will immediately be rejected.

func (st *StateTransition) preCheck() error {
// Only check transactions that are not fake
if !st.msg.IsFake() {

// Make sure this transaction's nonce is correct.
stNonce := st.state.GetNonce(st.msg.From())
if msgNonce := st.msg.Nonce(); stNonce < msgNonce {

return fmt.Errorf("%w: address %v, tx: %d state: %d",
ErrNonceTooHigh,

st.msg.From().Hex(), msgNonce, stNonce)
} else if stNonce > msgNonce {

return fmt.Errorf("%w: address %v, tx: %d state: %d",
ErrNonceTooLow,

st.msg.From().Hex(), msgNonce, stNonce)
} else if stNonce+1 < stNonce {

return fmt.Errorf("%w: address %v, nonce: %d", ErrNonceMax,
st.msg.From().Hex(), stNonce)

}

Figure 8.2: The header of the preCheck function in
go-ethereum/core/state_transition.go

After the execution of preCheck, the code checks other important values of each message,
including the transaction gas limit, as well as the balance of the sender’s account.

However, in Arbitrum, there is no notion of a mempool. Thus, if the transactions in a batch
are not in the correct order, or if any transaction is rejected by the StateTransition
function, the nonces of the remaining transactions will be incorrect, and they will all be
rejected.

Exploit Scenario
Alice submits a number of transactions in a batch of messages. The StateTransition
function finds one of the first transactions to be invalid, so the remaining transactions are
dropped.

Recommendations
Short term, document the behavior surrounding batched messages to ensure that users
are aware of it.

Trail of Bits 33 Arbitrum Nitro Security Assessment
PUBLIC

Long term, review the impacts of the geth design decisions on the Arbitrum system and
ensure that they do not negatively affect the user experience.

Trail of Bits 34 Arbitrum Nitro Security Assessment
PUBLIC

9. Insu�cient testing of HashProofHelper and NitroMigrator

Severity: Low Difficulty: Low

Type: Testing Finding ID: TOB-ArbOS-9

Target: contracts/src/osp/HashProofHelper.sol,
arb-bridge-eth/contracts/bridge/NitroMigrator.sol

Description
The HashProofHelper and NitroMigrator contracts lack sufficient testing. Robust unit
and integration tests are critical to the detection of bugs and logic errors early in the
development process.

The HashProofHelper contract’s tests currently check only the production of valid proofs
from full preimages and split preimages. As a result, they lack thorough coverage of cases
in which input is malformed (i.e., “unhappy” paths). Thorough test coverage would increase
users’ and developers’ confidence in the functionality of the code.

Additionally, randomized testing of proof input is repeated only 16 times, which may be
insufficient to detect corner cases. The HashProofHelper contract also contains
numerous cryptographic primitives that require more in-depth analysis.

Similarly, the NitroMigrator tests do not adequately cover the contract’s functionality. Its
tests check the postconditions of only transactions that do not revert and lack coverage of
state changes.

Exploit Scenario
The HashProofHelper contract is called to split up a proof as part of the one-step-proof
flow. Eve, an attacker, identifies an execution path that has not been tested and exploits it
to cause undefined behavior in the system.

Recommendations
Short term, expand the codebase’s unit and integration test coverage to include all happy
and unhappy paths.

Long term, integrate unit and integration tests into the CI / CD pipeline, and integrate
automated testing techniques such as fuzzing and symbolic execution into the codebase.

Trail of Bits 35 Arbitrum Nitro Security Assessment
PUBLIC

10. Manual deployment process

Severity: Low Difficulty: Medium

Type: Configuration Finding ID: TOB-ArbOS-10

Target: Migration process

Description
The migration-related contracts are deployed from an externally owned account (EOA). The
use of a manual upgrade process increases the risk of human error and typos.

The ProxyAdmin, TransparentUpgradeableProxy, and NitroMigrator contracts are
deployed through an EOA, after which ownership of the ProxyAdmin and
TransparentUpgradeableProxy is transferred to an Offchain Labs–controlled Gnosis
Safe multisig.

Exploit Scenario
Alice deploys the ProxyAdmin, TransparentUpgradeableProxy, and NitroMigrator
contracts. When transferring ownership of the ProxyAdmin and
TransparentUpgradeableProxy contracts to the Gnosis Safe multisig, she mistypes the
address of the multisig wallet. As a result, the contracts can be controlled only by the
owner of that incorrect address and must be redeployed.

Recommendations
Short term, use the Gnosis Safe multicall function to deploy these contracts. That way, the
multisig will have ownership of the contracts from their deployment.

Long term, use automated mechanisms such as deployment scripts, smart contract factory
patterns, and multicalls to reduce the risk of errors in the deployment process.

Trail of Bits 36 Arbitrum Nitro Security Assessment
PUBLIC

11. Outdated package dependencies

Severity: Low Difficulty: High

Type: Patching Finding ID: TOB-ArbOS-11

Target: arbitrum/packages/ arb-bridge-eth

Description
The system’s use of outdated dependencies may cause unexpected behavior.

For example, npm, which can check a repository for outdated package versions, found that
the Arbitrum Classic repository uses an outdated OpenZeppelin package. Because of a
vulnerability in this package, it may be possible for the initialize() function to be
invoked twice.

Affected versions of this package are vulnerable to Deserialization of Untrusted
Data. It is possible for initializer() protected functions to be executed twice, if
this happens in the same transaction. For this to happen, either one call has to be
a subcall to the other, or both calls have to be subcalls of a common initializer()
protected function. This can be particularly dangerous if the initialization is not
part of the proxy construction, and reentrancy is possible by executing an external
call to an untrusted address.

Figure 11.1: An explanation of the deserialization of untrusted data vulnerability in the
OpenZeppelin package

The go list -u -m -json all | go-mod-outdated -style markdown command
can be used to identify outdated dependencies in the Arbitrum Nitro version of ArbOS.

Exploit Scenario
Alice, an Arbitrum developer, refactors the contracts such that they can be initialized in two
separate transactions through a deployment script rather than through a proxy. Because of
Arbitrum’s use of a vulnerable and outdated OpenZeppelin package, the initialize()
function can be invoked twice, causing unexpected behavior.

Recommendations
Short term, upgrade to newer versions of the system’s outdated dependencies. If
versioning constraints prevent updates to any vulnerable package, document the
vulnerability and ensure that it will not become exploitable as new code is introduced.

Long term, integrate Dependabot or dependency checks into the CI pipeline and use the
latest versions of packages whenever possible.

Trail of Bits 37 Arbitrum Nitro Security Assessment
PUBLIC

https://security.snyk.io/vuln/SNYK-JS-OPENZEPPELINCONTRACTS-2320176

12. Lack of events for critical SequencerInbox operations

Severity: Low Difficulty: Medium

Type: Auditing and Logging Finding ID: TOB-ArbOS-12

Target: arb-bridge-eth/contracts/bridge/SequencerInbox.sol

Description
The two Arbitrum Nitro–specific SequencerInbox functions do not emit events for critical
operations. A lack of events makes it difficult to review the correct behavior and state of a
contract once it has been deployed.

If the sequencer called both functions in a single transaction, the calls would not be
reflected in the event logs:

/// @dev this function is intended to force include the delayed inbox a final time
in the nitro migration
function shutdownForNitro(uint256 _totalDelayedMessagesRead, bytes32 delayedAcc)

external
whenNotShutdownForNitro

{
// no delay on force inclusion, triggered only by rollup's owner
require(Rollup(payable(rollup)).owner() == msg.sender, "ONLY_ROLLUP_OWNER");

// if _totalDelayedMessagesRead == totalDelayedMessagesRead, we don't need to
force include

// if _totalDelayedMessagesRead < totalDelayedMessagesRead we are trying to read
backwards and will revert in forceInclusionImpl

// if _totalDelayedMessagesRead > totalDelayedMessagesRead we will force include
the new delayed messages into the seqInbox

if (_totalDelayedMessagesRead != totalDelayedMessagesRead) {
forceInclusionImpl(_totalDelayedMessagesRead, delayedAcc);

}

isShutdownForNitro = true;
}

function undoShutdownForNitro() external {
require(Rollup(payable(rollup)).owner() == msg.sender, "ONLY_ROLLUP_OWNER");
require(isShutdownForNitro, "NOT_SHUTDOWN");
isShutdownForNitro = false;

}

Figure 12.1: The shutdownForNitro and undoShutdownForNitro functions in
Portal.sol#L460–469

Trail of Bits 38 Arbitrum Nitro Security Assessment
PUBLIC

Without events, users and blockchain-monitoring systems cannot easily detect suspicious
behavior.

Exploit Scenario
Eve, an attacker, is able to take ownership of the SequencerInbox contract. She calls the
shutdownForNitro function to shut the inbox down for the Nitro upgrade. While the
system is in “Nitro mode,” she abuses sequencers by forcing messages into the inbox
without any delay. Eve then calls undoShutdownForNitro to revert the contract to its
pre-shutdown state.

Recommendations
Short term, add events for all critical operations that result in state changes. Events aid in
contract monitoring and the detection of suspicious behavior.

Long term, consider using a blockchain-monitoring system to track any suspicious behavior
in the contracts. The system relies on several contracts to behave as expected. A
monitoring mechanism for critical events would quickly detect any compromised system
components.

Trail of Bits 39 Arbitrum Nitro Security Assessment
PUBLIC

13. Incorrect migration of retryables

Severity: Medium Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ArbOS-13

Target: arbos/arbosState/initialize.go

Description
The migration from Arbitrum Classic to Nitro is meant to preserve the state of the
blockchain. However, the migration could cause users to lose the funds sent through a
retryable.

The initializeRetryables function loops through the retryables exported from
Arbitrum Classic. If the Timeout value of a retryable is less than the currentTimestamp
(i.e., the retryable is no longer redeemable and must be deleted), the function will skip over
it without sending the Callvalue to the Beneficiary address specified in the retryable.
As a result, the ether sent by the user will be lost.

func initializeRetryables(statedb *state.StateDB, rs *retryables.RetryableState,
initData statetransfer.RetryableDataReader, currentTimestamp uint64) error {

var retryablesList []*statetransfer.InitializationDataForRetryable
for initData.More() {

r, err := initData.GetNext()
if err != nil {

return err
}
if r.Timeout <= currentTimestamp {

continue
}
retryablesList = append(retryablesList, r)

}
sort.Slice(retryablesList, func(i, j int) bool {

a := retryablesList[i]
b := retryablesList[j]
if a.Timeout == b.Timeout {

return arbmath.BigLessThan(a.Id.Big(), b.Id.Big())
}
return a.Timeout < b.Timeout

})
for _, r := range retryablesList {

var to *common.Address
if r.To != (common.Address{}) {

to = &r.To
}
statedb.AddBalance(retryables.RetryableEscrowAddress(r.Id),

Trail of Bits 40 Arbitrum Nitro Security Assessment
PUBLIC

r.Callvalue)
_, err := rs.CreateRetryable(r.Id, r.Timeout, r.From, to, r.Callvalue,

r.Beneficiary, r.Calldata)
if err != nil {

return err
}

}
return initData.Close()

}

Figure 13.1: The initializeRetryables function in initialize.go#L167–199

Exploit Scenario
Bob, a user, creates a retryable with a Callvalue of 1 ETH. He intends to execute the
retryable in the future, as he knows that if it expires, the Callvalue will be sent back to
the specified Beneficiary address. However, after the migration, Bob notices that his
retryable has expired and that the Callvalue has not been refunded, leaving him with a
loss of 1 ETH.

Recommendations
Short term, have ArbOS send the Callvalue of any retryable that expires during the
migration to the specified Beneficiary address.

Long term, expand the unit and fuzz tests to cover any migration-related edge cases that
could lead to an undefined state.

Trail of Bits 41 Arbitrum Nitro Security Assessment
PUBLIC

14. Migration code does not scale to accommodate a large number of
validators or outboxes

Severity: Informational Difficulty: Medium

Type: Data Validation Finding ID: TOB-ArbOS-14

Target: NitroMigrator.sol, RollupAdmin.sol

Description
If the number of validators or outboxes in the system is too large, the smart contract code
that handles the migration process will fail to execute, blocking the migration.

As part of the migration from Arbitrum Classic to Arbitrum Nitro, smart contract code calls
specific functions in each Arbitrum component. The third step in the migration process
involves iterating through a list of all outboxes and reconfiguring each one to use the new
bridge.

function nitroStep3(
uint64 nitroGenesisBlockNumber,
bytes32 nitroGenesisHash,
bool skipCheck

) external onlyOwner {
…
uint256 numOutboxes = bridge.allowedOutboxListLength();
for (uint256 i = 0; i < numOutboxes; i++) {

// when we disable the list, it always shrinks by 1, so first index should
always be a new one

address currOutbox = bridge.allowedOutboxList(0);
IOutbox(currOutbox).setBridge(IBridge(address(nitroBridge)));
bridge.setOutbox(currOutbox, false);
nitroBridge.setOutbox(currOutbox, true);

}

Figure 14.1: Part of the nitroStep3 function in NitroMigrator.sol

Additionally, the shutdownForNitro function is called to shut down components such as
the Rollup contract.

function shutdownForNitro(
uint256 finalNodeNum,
bool destroyAlternatives,
bool destroyChallenges

) external whenNotPaused {
…

Trail of Bits 42 Arbitrum Nitro Security Assessment
PUBLIC

// we separate the loop that gets staker addresses to be different from the loop
that withdraw stakers

// since withdrawing stakers has side-effects on the array that is queried in
`getStakerAddress`.

for (uint64 i = 0; i < stakerCount; ++i) {
stakerAddresses[i] = getStakerAddress(i);

}

for (uint64 i = 0; i < stakerCount; ++i) {
address stakerAddr = stakerAddresses[i];
address chall = currentChallenge(stakerAddr);

if (chall != address(0)) {
require(destroyChallenges, "CHALLENGE_NOT_EXPECTED");
address asserter = IChallenge(chall).asserter();
address challenger = IChallenge(chall).challenger();

clearChallenge(asserter);
clearChallenge(challenger);

IChallenge(chall).clearChallenge();
emit ChallengeDestroyedInMigration(chall);

}

if (getNode(latestStakedNode(stakerAddr)) == INode(0)) {
// this node got destroyed, so we force refund the staker
withdrawStaker(stakerAddr);
emit StakerWithdrawnInMigration(stakerAddr);

}
// else the staker can unstake and withdraw regularly using

`returnOldDeposit`
}

shutdownForNitroBlock = block.number;
_pause();
emit OwnerFunctionCalled(25);

}

Figure 14.2: Part of the shutdownForNitro function in RollupAdmin.sol

Both the nitroStep3 function and the shutdownForNitro function must iterate over a
number of elements. If the number of elements (i.e., the number of outboxes or validators)
is very large, the functions may experience an out-of-gas exception and revert.

Exploit Scenario
Numerous validators are added to the Arbitrum system before the migration. This causes
the shutdownForNitro transaction to exceed the per-block gas limit, preventing the
execution of the migration code. As a result, the migration code must be changed or the
number of validators, reduced.

Trail of Bits 43 Arbitrum Nitro Security Assessment
PUBLIC

Recommendations
Short term, document the expected number of validators and outboxes that can exist in
the system without causing an out-of-gas exception during the migration process.

Long term, identify and evaluate all implicit or explicit loops in the smart contract code to
ensure that their execution will not trigger an out-of-gas exception.

Trail of Bits 44 Arbitrum Nitro Security Assessment
PUBLIC

15. Serialization of large JSON integers could result in interoperability issues

Severity: Low Difficulty: High

Type: Undefined Behavior Finding ID: TOB-ArbOS-15

Target: datadump.cpp

Description
Arbitrum Nitro’s method of serializing JSON values exported by validators can differ from
that of mainstream implementations such as NodeJS and jq.

The JSON standard warns about certain "interoperability problems" in numeric types
outside the range [-(253)+1, (253)-1]. These issues are caused by widely used JSON
implementations that use IEEE 754 (double-precision) numbers to implement integers.

For instance, if a validator saved the nonce value "1152921504606846976" (260), it would
be serialized as the expected value 1152921504606846976. However, web browsers,
NodeJS, and jq 1.5 would parse it as 1152921504606847000.

[
{
...
"nonce": 1152921504606846976,
...

}
]

Figure 15.1: An example of part of a JSON file

This parsing affects uint64 fields such as the nonce and Timeout fields, the values of
which are saved and parsed directly from JSON numbers, without the use of strings:

nlohmann::json serializeRetryable(ValueLoader loader, Value, Value retryable) {
nlohmann::json json;
auto tup = resolveTuple(loader, retryable);
json["Id"] = hashString(indexInt(tup, 0));
json["From"] = addressString(indexInt(tup, 1));
json["To"] = addressString(indexInt(tup, 2));
json["Callvalue"] = intx::to_string(indexInt(tup, 3));
json["Beneficiary"] = addressString(indexInt(tup, 5));
json["Calldata"] = serializeBytes(loader, indexTup(loader, tup, 6));
auto rem = indexTup(loader, tup, 7);
json["Timeout"] = uint64_t(indexInt(rem, 0));
return json;

Trail of Bits 45 Arbitrum Nitro Security Assessment
PUBLIC

}

Figure 15.2: The serializeRetryable function

Exploit Scenario
When migrating from Arbitrum Classic to Arbitrum Nitro, Alice exports data generated by
her node. This data contains a value of the uint64 type, which is not supported by the
JSON standard. As a result, the Nitro chain is initialized incorrectly, causing some accounts
and retryable tickets to use incorrect data.

Recommendations
Short term, use strings instead of JSON numeric values to implement the uint64 fields.
This will prevent any ambiguity when parsing the numeric fields of JSON files.

Long term, review the standards regarding the data exported and imported by validators to
identify any sources of ambiguity.

References
● RFC 8259, Section 6 “Numbers”

Trail of Bits 46 Arbitrum Nitro Security Assessment
PUBLIC

https://datatracker.ietf.org/doc/html/rfc8259#section-6

16. Validators are not compensated for executing the migration

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ArbOS-16

Target: Migration process

Description
When migrating from Arbitrum Classic to Arbitrum Nitro, validators must export the state
of Arbitrum Classic and import it into Arbitrum Nitro. However, they are not compensated
for this work.

There are currently around 1 million accounts in Arbitrum Classic. These accounts must be
migrated to Arbitrum Nitro one by one, through an iterative process that could cause each
validator to incur a significant computational cost.

Exploit Scenario
Eve, an attacker, deploys a contract that sends 1 wei to a pseudorandom set of addresses,
creating new state data that will need to be migrated. In this way, Eve forces a validator to
migrate a large amount of additional data without spending much herself.

Recommendations
Short term, document the fact that validators are not compensated for executing the
migration.

Long term, review the costs and incentives associated with the recurrent and exceptional
processes that are executed in Arbitrum.

Trail of Bits 47 Arbitrum Nitro Security Assessment
PUBLIC

17. Risk of a node crash during parsing of DAS sequencer messages

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-ArbOS-17

Target: arbstate/inbox.go

Description
A specially crafted AnyTrust sequencer message could cause a validator crash.

As part of Arbitrum Nitro’s AnyTrust mode, an external Data Availability Committee (DAC)
stores data on Data Availability Servers (DAS) and provides a Data Availability Certificate
(DACert). The L2 code then parses and checks the validity of the DACert in the inbox, which
is posted on L1 Ethereum in place of standard calldata.

func RecoverPayloadFromDasBatch(
ctx context.Context,
batchNum uint64,
sequencerMsg []byte,
dasReader DataAvailabilityReader,
preimages map[common.Hash][]byte,
keysetValidationMode KeysetValidationMode,

) ([]byte, error) {
cert, err := DeserializeDASCertFrom(bytes.NewReader(sequencerMsg[40:]))
if err != nil {

log.Error("Failed to deserialize DAS message", "err", err)
return nil, nil

}
version := cert.Version
[...]
getByHash := func(ctx context.Context, hash common.Hash) ([]byte, error) {

newHash := hash
if version == 0 {

newHash = dastree.FlatHashToTreeHash(hash)
}

preimage, err := dasReader.GetByHash(ctx, newHash)
if err != nil && hash != newHash {

log.Debug("error fetching new style hash, trying old", "new",
newHash, "old", hash, "err", err)

preimage, err = dasReader.GetByHash(ctx, hash)
}
if err != nil {

return nil, err
}

Trail of Bits 48 Arbitrum Nitro Security Assessment
PUBLIC

switch {
case version == 0 && crypto.Keccak256Hash(preimage) != hash:

fallthrough
case version == 1 && dastree.Hash(preimage) != hash:

log.Error(
"preimage mismatch for hash",
"hash", hash, "err", ErrHashMismatch, "version", version,

)
return nil, ErrHashMismatch

case version >= 2:
log.Error(

"Committee signed unsuported certificate format",
"version", version, "hash", hash, "payload", preimage,

)
panic("node software out of date")

}
return preimage, nil

}
[...]

Figure 17.1: Part of the RecoverPayloadFromDasBatch function in inbox.go

However, if the version specified in the DACert is greater than or equal to 2, the validator
that processes it will panic.

Exploit Scenario
Eve, a malicious party with control of the sequencer (or acting in collusion with it), posts a
message that includes a DACert set to version 2. As a result, the validator node that
processes the message crashes.

Recommendations
Short term, ensure that noncritical error conditions such as an invalid version number or
the use of outdated software by a node are handled correctly.

Long term, review the use of panics and ensure that the system panics only when
absolutely necessary—that is, when it has entered a critical state from which it cannot
recover.

Trail of Bits 49 Arbitrum Nitro Security Assessment
PUBLIC

18. Possible bypass of DACert expiration

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-ArbOS-18

Target: arbstate/inbox.go

Description
An integer overflow during the validation of a DACert could lead to the acceptance of an
expired DACert, meaning that committee members would not be required to provide the
data associated with the certificate.

The RecoverPayloadFromDasBatch function deserializes DACerts from sequencer
messages and then validates them.

func RecoverPayloadFromDasBatch(
ctx context.Context,
batchNum uint64,
sequencerMsg []byte,
dasReader DataAvailabilityReader,
preimages map[common.Hash][]byte,
keysetValidationMode KeysetValidationMode,

) ([]byte, error) {
[...]

maxTimestamp := binary.BigEndian.Uint64(sequencerMsg[8:16])
if cert.Timeout < maxTimestamp+MinLifetimeSecondsForDataAvailabilityCert {

log.Error("Data availability cert expires too soon", "err", "")
return nil, nil

}
[...]

Figure 18.1: Part of the RecoverPayloadFromDasBatch function in inbox.go

However, the validation of a DACert’s Timeout value can result in an integer overflow, as
MinLifetimeSecondsForDataAvailabilityCert is a constant set to one week (in
seconds) and the maxTimestamp value is controlled by the sequencer.

Exploit Scenario
Eve, a malicious party who controls a sequencer, obtains a signed batch of data that has
already expired. After collecting enough signatures, she posts a DACert with a
maxTimestamp set to a very large value. As a result, if there is a challenge, the data
necessary for its resolution may not be available.

Trail of Bits 50 Arbitrum Nitro Security Assessment
PUBLIC

Recommendations
Short term, use saturation arithmetic in the addition of maxTimestamp and
MinLifetimeSecondsForDataAvailabilityCert.

Long term, improve the suite of unit tests and integrate automated testing techniques such
as fuzzing into the codebase.

Trail of Bits 51 Arbitrum Nitro Security Assessment
PUBLIC

Summary of Recommendations

Offchain Labs’s Arbitrum codebase is a work in progress with multiple planned iterations.
Trail of Bits recommends that Offchain Labs address the findings detailed in this report and
take the following additional steps prior to deployment:

● Enhance the suite of unit tests to ensure that the system behaves as expected
when handling both happy and unhappy paths. This will help identify
problematic code and increase users’ and developers’ confidence in the code.

● Integrate fuzz testing into the development process to detect potential panics.
See appendix D for recommendations on fuzzing ArbOS.

● Integrate automated dependency auditing into the development workflow.
That way, if a dependency is found to be vulnerable, Offchain Labs will be made
aware of the vulnerability and will be able to take the necessary steps to prevent its
exploitation.

● Review the geth architecture and ensure that its effects on the Arbitrum
implementation are explicitly documented. This will help ensure that users and
developers are aware of the specifics of the Arbitrum ecosystem.

● Favor the use of automated processes over manual processes. The use of
deployment scripts, contract factory patterns, and multicalls during the migration
process will limit the chance of mistakes.

● Execute static analysis tools as part of the development workflow to ensure
that any issues are caught early in the process. The use of these tools will also
provide the team with additional real-time feedback on pull requests.

● Clearly document the expectations surrounding the HashProofHelper
contract and the data import / export code. That way, the team will be able to
cross-reference any unexpected behavior with the documentation. Clear developer
documentation will also ensure that the process of cloning and setting up the
repository is a smooth one.

Trail of Bits 52 Arbitrum Nitro Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 53 Arbitrum Nitro Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 54 Arbitrum Nitro Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Front-Running
Resistance

The system’s resistance to front-running attacks

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Trail of Bits 55 Arbitrum Nitro Security Assessment
PUBLIC

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 56 Arbitrum Nitro Security Assessment
PUBLIC

C. Risks Associated with Malicious Sequencers

Offchain Labs intends to allow third parties to serve as sequencers. The introduction of
third-party sequencers could introduce the following risks:

● Malicious sequencers could control block numbers, timePassed,
batchTimestamp, batchPosterAddress, and batchDataGas values, and the L1
base fee.

func ApplyInternalTxUpdate(tx *types.ArbitrumInternalTx, state
*arbosState.ArbosState, evm *vm.EVM) {

switch *(*[4]byte)(tx.Data[:4]) {
case InternalTxStartBlockMethodID:

inputs, err := util.UnpackInternalTxDataStartBlock(tx.Data)
if err != nil {

panic(err)
}
l1BlockNumber, _ := inputs[1].(uint64) // current block's
timePassed, _ := inputs[2].(uint64) // since last block

nextL1BlockNumber, err := state.Blockhashes().NextBlockNumber()
state.Restrict(err)

l2BaseFee, err := state.L2PricingState().BaseFeeWei()
state.Restrict(err)

if l1BlockNumber >= nextL1BlockNumber {
var prevHash common.Hash
if evm.Context.BlockNumber.Sign() > 0 {

prevHash =
evm.Context.GetHash(evm.Context.BlockNumber.Uint64() - 1)

}

state.Restrict(state.Blockhashes().RecordNewL1Block(l1BlockNumber, prevHash))
}

currentTime := evm.Context.Time.Uint64()

// Try to reap 2 retryables
_ = state.RetryableState().TryToReapOneRetryable(currentTime, evm,

util.TracingDuringEVM)
_ = state.RetryableState().TryToReapOneRetryable(currentTime, evm,

util.TracingDuringEVM)

state.L2PricingState().UpdatePricingModel(l2BaseFee, timePassed, false)

state.UpgradeArbosVersionIfNecessary(currentTime, evm.ChainConfig())

Figure C.1: Part of the ApplyInternalTxUpdate function in arbos/internal_tx.go

Trail of Bits 57 Arbitrum Nitro Security Assessment
PUBLIC

● Sequencers could replay individual messages in a batch. Replaying a transaction
could enable a sequencer to change the structure of a batch.

Trail of Bits 58 Arbitrum Nitro Security Assessment
PUBLIC

D. Recommendations for Fuzzing ArbOS

Trail of Bits reviewed the fuzz tests for ArbOS provided by Offchain Labs, which cover state
transitions and the precompiled contracts. We recommend that Offchain Labs take the
following steps to further strengthen its suite of fuzz tests:

● Keep the tests up to date and run them at least once before every candidate or
internal release or (if the code is not frozen) once every three days.

● Identify any roadblocks in the fuzzer’s random exploration of data and develop
workarounds for them. For instance, when exploring the ArbRetryable code, the
fuzzer was unable to reach code that is executed upon the successful redemption of
a retryable ticket. To overcome this, we added code that creates a valid ticket:

state, err := arbosState.OpenSystemArbosState(sdb, nil, false)
if err != nil {

panic(err)
}
id := common.BytesToHash([]byte{0})
lastTimestamp := 1657530074

from := common.BytesToAddress([]byte{3, 4, 5})
to := common.BytesToAddress([]byte{6, 7, 8, 9})
timeout := lastTimestamp + 10000000000
callvalue := big.NewInt(0)
beneficiary := from
calldata := make([]byte, 42)
for i := range calldata {

calldata[i] = byte(i + 3)
}
_, err = state.RetryableState().CreateRetryable(id, uint64(timeout + 10000000000),
from, &to, callvalue, beneficiary, calldata)

Figure D.1: Part of the fuzzing code that adds a new retryable ticket

● Enable the use of the DAS reader during the parsing of messages from the inbox.

type PreimageDASReader struct {
}

func (dasReader *PreimageDASReader) GetByHash(ctx context.Context, hash common.Hash)
([]byte, error) {

return hash.Bytes(), nil
}

func (dasReader *PreimageDASReader) HealthCheck(ctx context.Context) error {
return nil

}

Trail of Bits 59 Arbitrum Nitro Security Assessment
PUBLIC

func (dasReader *PreimageDASReader) ExpirationPolicy(ctx context.Context)
(arbstate.ExpirationPolicy, error) {

return arbstate.DiscardImmediately, nil
}

func BuildBlock(
statedb *state.StateDB,
lastBlockHeader *types.Header,
chainContext core.ChainContext,
chainConfig *params.ChainConfig,
inbox arbstate.InboxBackend,
seqBatch []byte,

) (*types.Block, error) {
var delayedMessagesRead uint64
if lastBlockHeader != nil {

delayedMessagesRead = lastBlockHeader.Nonce.Uint64()
}
var dasReader arbstate.DataAvailabilityReader
dasReader = &PreimageDASReader{}
inboxMultiplexer := arbstate.NewInboxMultiplexer(inbox, delayedMessagesRead,

dasReader, arbstate.KeysetDontValidate)
...

Figure D.2: Part of the fuzzing code for the DACert validation process

● Implement a fuzzing mode in which the execution of unexpected code triggers a
panic. For instance, we instrumented the TransferBalance function with the
following code to detect suspicious uses of the function:

func TransferBalance(
from, to *common.Address,
amount *big.Int,
evm *vm.EVM,
scenario TracingScenario,
purpose string,

) error {
if arbmath.BigLessThan(amount, big.NewInt(0)) {

panic(amount)
}
if (from == to) {

panic("self transfer")
}
if from != nil {

balance := evm.StateDB.GetBalance(*from)
if arbmath.BigLessThan(balance, amount) {

return fmt.Errorf("%w: addr %v have %v want %v",
vm.ErrInsufficientBalance, *from, balance, amount)

}
evm.StateDB.SubBalance(*from, amount)

Trail of Bits 60 Arbitrum Nitro Security Assessment
PUBLIC

}
...

Figure D.3: The header of the TransferBalance function, which includes two new checks

An incorrect use of TransferBalance will trigger the first panic. An occurrence of the
second panic may not be indicative of incorrect use but should be investigated regardless.
There is no need to include both checks in the final version of ArbOS, so we recommend
using build tags when compiling the code.

Trail of Bits 61 Arbitrum Nitro Security Assessment
PUBLIC

https://pkg.go.dev/go/build#hdr-Build_Constraints

E. Echidna Invariant Test for HashProofHelper

Trail of Bits wrote a differential fuzz test to compare the proveWithFullPreimage
function and the proveWithSplitPreimage function. It checks that the functions return
the same fullHash and split preimage when given the same inputs and that they never
revert when provided valid inputs. When executed with an unusually high Echidna test limit
of 1 million runs, the test passed. Additionally, to achieve better coverage, we implemented
a small fix to allow Echidna to generate arrays of up to 150 elements.

pragma solidity 0.8.9;

import "./HashProofHelper.sol";

contract Echidna {
HashProofHelper hashProofHelperFull;
HashProofHelper hashProofHelperSplit;

constructor() {
hashProofHelperFull = new HashProofHelper();
hashProofHelperSplit = new HashProofHelper();

}

function fuzz(bytes calldata data, uint64 offset) public {
bytes32 fullHash_full;
bool reverted_full;
offset = uint64(uint256(offset) % data.length);
try hashProofHelperFull.proveWithFullPreimage(data, offset) returns(bytes32

fullHash_ret) {
fullHash_full = fullHash_ret;

} catch (bytes memory e) {
reverted_full = true;

}

uint256 len = data.length;
uint256 provenLen;
bytes32 fullHash_split;
bool reverted_split;
while (fullHash_split == bytes32(0) && !reverted_split) {

uint256 newProvenLen = provenLen + 136;
if (newProvenLen > len) {

newProvenLen = len;
}
uint256 isFinal = newProvenLen == len ? 1 : 0;
try

hashProofHelperSplit.proveWithSplitPreimage(data[provenLen:newProvenLen], offset,
isFinal) returns(bytes32 fullHash_ret) {

provenLen = newProvenLen;
fullHash_split = fullHash_ret;

} catch (bytes memory e) {
reverted_split = true;

Trail of Bits 62 Arbitrum Nitro Security Assessment
PUBLIC

https://github.com/crytic/echidna/pull/807

}
}
assert(reverted_full == reverted_split && !reverted_full);
assert(fullHash_split == fullHash_full);
bytes memory part_full = hashProofHelperFull.getPreimagePart(fullHash_full,

offset);
bytes memory part_split =

hashProofHelperSplit.getPreimagePart(fullHash_split, offset);
assert(part_full.length <= 32 && part_split.length <= 32);
assert(keccak256(part_full) == keccak256(part_split));

}
}

Figure E.1: The Echidna property test

Trail of Bits 63 Arbitrum Nitro Security Assessment
PUBLIC

F. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

ArbOS
● Use lowercase letters for package names.

nodeInterface/virtual-contracts.go:4:1: don't use MixedCaps in package name;
nodeInterface should be nodeinterface (golint)
package nodeInterface
^
nodeInterface/NodeInterfaceDebug.go:4:1: don't use MixedCaps in package name;
nodeInterface should be nodeinterface (golint)
package nodeInterface
^
nodeInterface/NodeInterface.go:4:1: don't use MixedCaps in package name;
nodeInterface should be nodeinterface (golint)
package nodeInterface
^

Figure F.1: Package names that use MixedCaps

● Replace all static error messages with dynamic error messages. This will make it
easier to reuse code throughout the repository.

● Use crypto/rand rather than math/rand in
util/testhelpers/testhelpers.go.

● Ensure that the codebase handles panics consistently.

● Ensure that all casting operations are safe casts.

err = con.LifetimeExtended(c, evm, ticketId, big.NewInt(int64(newTimeout)))
return big.NewInt(int64(newTimeout)), err

Figure F.2: An unsafe cast in nitro/precompiles/ArbRetryableTx.go

● Remove unused parameters (e.g., the timeToAdd parameter in
arbos/retryable/retryable.go#L218).

HashProofHelper
● Replace the expression delete keccakStates[msg.sender] with a call to the

clearSplitProof function. The use of helper functions such as this one will
reduce the amount of duplicated code.

Trail of Bits 64 Arbitrum Nitro Security Assessment
PUBLIC

● Remove the shift by 0 on line 58 of HashProofHelper.sol.

● Remove the + stateIdx / 5 from the state index calculation; this operation is
unnecessary, as stateIdx / 5 will always be equal to 0.

for (uint256 i = 0; i < 32; i++) {
uint256 stateIdx = i / 8;
// work around our weird keccakF function state ordering
stateIdx = 5 * (stateIdx % 5) + stateIdx / 5;

Figure F.3: HashProofHelper.sol#L87–90

● Change the pragma from ^0.8.0 to a higher version that supports custom
errors.

Error: Expected ';' but got '('
--> src/osp/HashProofHelper.sol:10:16:
|

10 | error NotProven(bytes32 fullHash, uint64 offset);
|

Figure F.4: HashProofHelper.sol#L87–90

Migration-Related Contracts
● Remove the unused Sequencer.postUpgradeInit function. The inclusion of

dead code can increase the size of a codebase and reduce readability.

● Remove latestCompleteStep from the NitroMigrator.initialize()
function. The enum is already set to Uninitialized by default.

● Use consistent function names. The use of the function names pause and resume
(rather than pause and unpause) may cause confusion.

Trail of Bits 65 Arbitrum Nitro Security Assessment
PUBLIC

G. Nitro Migration Plan Recommendations

● Differentiate between the operations that are performed manually and those
that are handled by off-chain scripts. Where possible, implement automated
deployment checks to supplement manual analysis work.

● Specify concrete time limits for the execution of various steps in the migration
process. Additional detailed information on how long it will take for a batch to be
posted, for example, will be helpful during the migration process.

● Ensure that any errors in off-chain components are surfaced, and add links to
the relevant off-chain scripts where possible.

● Clearly differentiate between validator and sequencer events that should be
logged during a migration and those that should not be. This will enable the
team to triage the state of these components.

● Ensure that all smart contract calls are explicitly mentioned in the migration
plan. For example, the call to the configureDeployment function should be “step
0” of the plan so that the migration begins with the setup of the NitroMigrator
contract.

● Consider using automated scripts to handle transfers of contracts’ ownership.
Automating this process will reduce the likelihood of mistakes.

Trail of Bits 66 Arbitrum Nitro Security Assessment
PUBLIC

