

Offchain Labs Arbitrum Nitro
External DA
Security Assessment (Summary Report)

January 12, 2026

Prepared for:​

Harry Kalodner, Steven Goldfeder, and Ed Felten​
Offchain Labs

Prepared by: Simone Monica and Jaime Iglesias

​
 Trail of Bits​ ​ ​
 PUBLIC​ ​

Table of Contents

Table of Contents​ 1
Project Summary​ 2
Project Targets​ 3
Executive Summary​ 4
Summary of Findings​ 5
Detailed Findings​ 6

1. Missing validations in executeValidatePreimage​ 6
2. Missing sequencer message length checks​ 9
3. Unclear why the blob decode error is not being propagated​ 12
4. Unclear behavior during sequencer message parsing​ 13

A. Vulnerability Categories​ 14
B. Code Quality Issues​ 16
C. Fix Review Results​ 19

Detailed Fix Review Results​ 19
D. Fix Review Status Categories​ 21
About Trail of Bits​ 22
Notices and Remarks​ 23

​
 Trail of Bits​ 1​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

Project Summary

Contact Information
The following project manager was associated with this project:

Mary O’Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering director was associated with this project:

Benjamin Samuels, Engineering Director, Blockchain
benjamin.samuels@trailofbits.com

The following consultants were associated with this project:

​ Jaime Iglesias, Consultant​ ​ Simone Monica, Consultant
​ jaime.iglesias@trailofbits.com​ simone.monica@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date​ Event

December 9, 2025​ Project kick-off call

December 19, 2025​ Delivery of report draft

December 30, 2025​ Delivery of final summary report

January 12, 2026​ Completion of fix review

​
 Trail of Bits​ 2​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

mailto:mary.obrien@trailofbits.com

Project Targets

The engagement involved reviewing and testing the following targets.

nitro
Repository ​ https://github.com/OffchainLabs/nitro/

Version ​ 3f226a0ecf91ceed3688a2fc41969fae1f32d03d

Type ​ Go/Rust

Platform ​ EVM

nitro-contracts
Repository ​ https://github.com/OffchainLabs/nitro-contracts/

Version ​ 940373b68d0e9cffa006eb9e6d0b4376138d531c

Type ​ Solidity

Platform ​ EVM

​
 Trail of Bits​ 3​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/OffchainLabs/nitro/
https://github.com/OffchainLabs/nitro-contracts/

Executive Summary

Engagement Overview
Offchain Labs engaged Trail of Bits to review the security of its Nitro product, with an
emphasis on the changes made to implement its external Data Availability (DA) extension,
which allows external DA providers to integrate with Nitro without requiring any custom
changes to the node or the contracts.

A team of two consultants conducted the review from December 9 to December 19, 2025,
for a total of four engineer-weeks. With full access to source code and documentation, we
performed static and dynamic testing of the target, using automated and manual
processes.

Observations and Impact
The main goal of the review was to assess the correctness of the external DA
implementation, looking for potential implementation mistakes (e.g., missing checks),
unintended divergences between Nitro and the challenge contracts, and potential
opportunities for improvements.

Overall, we found the implementation to be clear and thoughtful. The provided support
documentation for the changes is comprehensive and provides explanations behind the
reasoning for all the changes, as well as the intended final properties of the system, which
was very helpful during the review.

The issues disclosed in this report are mainly related to edge cases, missing checks, and
divergences in behavior between Nitro and the contracts.

Recommendations
Based on the findings identified during the security review, Trail of Bits recommends that
Offchain Labs take the following steps:

●​ Remediate the findings disclosed in this report. These findings should be
addressed through direct fixes or broader refactoring efforts.

​
 Trail of Bits​ 4​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

Summary of Findings

The table below summarizes the findings of the review, including details on type and
severity.

ID Title Type Severity

1 Missing validations in executeValidatePreimage Data
Validation

Undetermined

2 Missing sequencer message length checks Data
Validation

Low

3 Unclear why the blob decode error is not being
propagated

Error
Reporting

Informational

4 Unclear behavior during sequencer message parsing Undefined
Behavior

Low

​
 Trail of Bits​ 5​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

Detailed Findings

1. Missing validations in executeValidatePreimage

Severity: Undetermined Difficulty: High

Type: Data Validation Finding ID: TOB-EXTDA-1

Target: arbitrator/prover/src/machine.rs,
src/osp/OneStepProverHostIo.sol

Description
The executeValidatePregimage function of the oneStepProverHostio contract is
missing validation of the PreImageType and ptr inputs; validation of these inputs is
present in the equivalent implementation in Nitro’s machine.rs, so there is a divergence
between Nitro and the challenge protocol.

We can see in the figure below that, in Nitro, both the preImageType and the ptr inputs
are checked. Note that an invalid preimage_type will cause 0 to be pushed to the stack,
while an invalid ptr will cause the machine status to be set to errored through the
error! macro.

Opcode::ValidateCertificate => {
 let preimage_type = value_stack.pop().unwrap().assume_u32();
 let hash_ptr = value_stack.pop().unwrap().assume_u32();

 // Try to convert preimage_type to PreimageType
 let Ok(preimage_ty) = PreimageType::try_from(u8::try_from(preimage_type)?)
 else {
 // For invalid preimage types, return 0 (invalid)
 value_stack.push(Value::from(0u32));
 continue;
 };

 // Load the hash from memory
 let Some(hash) = module.memory.load_32_byte_aligned(hash_ptr.into()) else {
 error!();
 };

 [...]

Figure 1.1: Part of the step_n function in machine.rs#L2470–L2485

​
 Trail of Bits​ 6​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/arbitrator/prover/src/machine.rs#L2470-L2485

For proving purposes, it is of the utmost importance that the behavior in machine.rs is
accurately replicated by the challenge protocol; however, when we check the
oneStepProverHostio contract’s executeValidatePregimage function, we can see
that there is a divergence in behavior.

function executeValidatePreimage(
 ExecutionContext calldata,
 Machine memory mach,
 Module memory mod,
 Instruction calldata,
 bytes calldata proof
) internal view {
 uint256 preimageType = mach.valueStack.pop().assumeI32();
 uint256 ptr = mach.valueStack.pop().assumeI32();

 [...]

 if (preimageType == 3) {
 require(address(customDAValidator) != address(0),
"CUSTOM_DA_VALIDATOR_NOT_SUPPORTED");
 if (validateAndCheckCertificate(proof, proofOffset, leafContents)) {
 mach.valueStack.push(ValueLib.newI32(1));
 } else {
 mach.valueStack.push(ValueLib.newI32(0));
 }
 } else {
 // Non-CustomDA always valid
 mach.valueStack.push(ValueLib.newI32(1));
 }

 // Update merkle root
 mod.moduleMemory.merkleRoot = merkleProof.computeRootFromMemory(leafIdx,
leafContents);
}

Figure 1.2: Part of the executeValidatePreimage function in
OneStepProverHostio.sol#L275–307

preImageType and ptr are simply popped from the stack (just like in machine.rs);
however, there are no equivalent checks to u8::try_from(inst.argument_data)? and

module.memory.load_32_byte_aligned(hash_ptr.into());

The reason this finding is of undetermined severity is because, as of this moment, it is
unclear whether exploiting this divergence is possible in practice.

Recommendations
Short term, consider including additional checks in executeValidatePreImage, as
follows.​
​
For preImageType, the executeValidatePreimage function should return 0 when an

​
 Trail of Bits​ 7​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/OffchainLabs/nitro-contracts/blob/940373b68d0e9cffa006eb9e6d0b4376138d531c/src/osp/OneStepProverHostIo.sol#L275-L307

invalid preImageType is input (e.g., >= 4 && <= 255) and should revert otherwise (e.g., >
255).

For ptr, the machine status should be set to errored if
mod.moduleMemory.isValidLeaf(ptr) returns false.

Long term, ensure that any divergences between Nitro and the challenge protocol
contracts are intended, and thoroughly document them.

​
 Trail of Bits​ 8​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

2. Missing sequencer message length checks

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-EXTDA-2

Target: daprovider/server/provider_server.go, daprovider/reader.go

Description
The RecoverPayload and CollectPreimages functions in provider_server.go do not
perform any length checks on the sequencerMsg.

First, the public functions in the server will be called, where no length checks are
performed.

func (s *ReaderServer) RecoverPayload(
​ ctx context.Context,
​ batchNum hexutil.Uint64,
​ batchBlockHash common.Hash,
​ sequencerMsg hexutil.Bytes,
) (*daprovider.PayloadResult, error) {
​ promise := s.reader.RecoverPayload(uint64(batchNum), batchBlockHash,
sequencerMsg)
 [...]
}

func (s *ReaderServer) CollectPreimages(
​ ctx context.Context,
​ batchNum hexutil.Uint64,
​ batchBlockHash common.Hash,
​ sequencerMsg hexutil.Bytes,
) (*daprovider.PreimagesResult, error) {
​ promise := s.reader.CollectPreimages(uint64(batchNum), batchBlockHash,
sequencerMsg)
 [...]

Figure 2.1: The RecoverPayload and CollectPreimages functions in
provider_server.go#L188–L214

Later, the functions in the DA provider reader will be called, which will also not perform any
checks.

// RecoverPayload fetches the underlying payload from the DA provider
func (b *readerForBlobReader) RecoverPayload(
​ batchNum uint64,

​
 Trail of Bits​ 9​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/daprovider/server/provider_server.go#L188-L214

​ batchBlockHash common.Hash,
​ sequencerMsg []byte,
) containers.PromiseInterface[PayloadResult] {
​ return containers.DoPromise(context.Background(), func(ctx context.Context)
(PayloadResult, error) {
​ ​ payload, _, err := b.recoverInternal(ctx, batchBlockHash, sequencerMsg,
true, false)
​ ​ return PayloadResult{Payload: payload}, err
​ })
}

// CollectPreimages collects preimages from the DA provider
func (b *readerForBlobReader) CollectPreimages(
​ batchNum uint64,
​ batchBlockHash common.Hash,
​ sequencerMsg []byte,
) containers.PromiseInterface[PreimagesResult] {
​ return containers.DoPromise(context.Background(), func(ctx context.Context)
(PreimagesResult, error) {
​ ​ _, preimages, err := b.recoverInternal(ctx, batchBlockHash,
sequencerMsg, false, true)
​ ​ return PreimagesResult{Preimages: preimages}, err
​ })
}

Figure 2.2: The RecoverPayload and CollectPreimages functions in
reader.go#L115–L136

Finally, the recoverInternal function will be reached, where the server will crash if it
attempts to access an offset of the message and the length is not the expected one.

// recoverInternal is the shared implementation for both RecoverPayload and
CollectPreimages
func (b *readerForBlobReader) recoverInternal(
​ ctx context.Context,
​ batchBlockHash common.Hash,
​ sequencerMsg []byte,
​ needPayload bool,
​ needPreimages bool,
) ([]byte, PreimagesMap, error) {
​ blobHashes := sequencerMsg[41:]
 [...]

Figure 2.3: The recoverInternal function in reader.go#L70–L77

Note that we assume this server is intended for local use; therefore, a malicious user is not
part of the threat model, which is why this issue is not of higher severity.

Exploit Scenario
A malicious user sends an invalid sequencer message to the provider server, and when it is
parsed, it causes the server to crash.

​
 Trail of Bits​ 10​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/daprovider/reader.go#L115-L136
https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/daprovider/reader.go#L70-L77

Recommendations
Short term, implement length checks on the sequencerMsg.

Long term, thoroughly review similar code paths, ensuring all the needed checks are
present. This can also be done effectively by including tests with malformed or invalid
messages.

​
 Trail of Bits​ 11​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

3. Unclear why the blob decode error is not being propagated

Severity: Informational Difficulty: Low

Type: Error Reporting Finding ID: TOB-EXTDA-3

Target: daprovider/reader.go

Description
The recoverInternal function will treat blobs that fail to decode as empty batches
instead of propagating the error. While we believe this is the correct behavior, we
recommend adding code comments to explain why the error is not propagated.

​ var payload []byte
​ if needPayload {
​ ​ payload, err = blobs.DecodeBlobs(kzgBlobs)
​ ​ if err != nil {
​ ​ ​ log.Warn("Failed to decode blobs", "batchBlockHash",
batchBlockHash, "versionedHashes", versionedHashes, "err", err)
​ ​ ​ return nil, nil, nil
​ ​ }
​ }

​ return payload, preimages, nil
}

Figure 3.1: Snippet of the recoverInternal function, showing that it does not propagate the
error, in reader.go#L102–L109

Recommendations
Short term, include a code comment explaining why the error is not being propagated and
why decode failures are treated as empty batches.

Long term, whenever possible, include code comments that explain system behavior under
certain situations (e.g., edge cases, errors).

​
 Trail of Bits​ 12​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/daprovider/reader.go#L102-L109

4. Unclear behavior during sequencer message parsing

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-EXTDA-4

Target: arbstate/inbox.go

Description
The following error message suggests that the ParseSequencerMessage function treats
sequencer batches that fail certificate validation as empty batches; however, for the batch
to be treated as an empty batch, the payload needs to be set to nil.

​ } else if daprovider.IsDACertificateMessageHeaderByte(payload[0]) &&
daprovider.IsCertificateValidationError(err) {
​ ​ log.Warn("Certificate validation of sequencer batch failed, treating it
as an empty batch", "batch", batchNum, "error", err)
​ } else {
​ ​ return nil, err
​ }
} else {
​ payload = result.Payload
}
if payload == nil {
​ return parsedMsg, nil
}
[...]

Figure 4.1: Part of the ParseSequencerMessage function in inbox.go#L124–L135

Exploit Scenario
An invalid certificate is posted to the inbox; however, when processed, it is not processed
as an empty batch, contrary to what was expected.

Recommendations
Short term, have the ParseSequencerMessage function set the payload to nil when the
certificate validation fails.

Long term, thoroughly document this behavior and ensure code branches behave as
expected. This can be done by enhancing the testing by including invalid inputs—in this
case, invalid certificates.

​
 Trail of Bits​ 13​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/arbstate/inbox.go#L124-L135

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

​
 Trail of Bits​ 14​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

​
 Trail of Bits​ 15​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

B. Code Quality Issues

This appendix contains findings that do not have immediate or obvious security
implications. However, addressing them may enhance the code’s readability and may
prevent the introduction of vulnerabilities in the future.

●​ Generic “CustomDA enhancement” language is used in error messages across the
codebase. Replace these uses with the relevant name (validateCertificate or
readPreimage).

if len(proof) < minProofSize {
​ return nil, fmt.Errorf("proof too short for CustomDA enhancement:
expected at least %d bytes, got %d", minProofSize, len(proof))
}

// Verify marker
if proof[markerPos] != MarkerCustomDAReadPreimage {
​ return nil, fmt.Errorf("invalid marker for CustomDA enhancer: 0x%02x",
proof[markerPos])
}

Figure B.1: Example error messages in readpreimage_proof_enhancer.go#L73–L87

●​ validatecertificate_proof_enhancer validates the proof before retrieving the
message from the inbox, whereas readpreimage_proof_enhancer does not.
Essentially, the order of checks between them differs.

func (e *ValidateCertificateProofEnhancer) EnhanceProof(ctx context.Context,
messageNum arbutil.MessageIndex, proof []byte) ([]byte, error) {
​ // Extract the hash and marker from the proof
​ // Format: [...proof..., certHash(32), marker(1)]
​ minProofSize := CertificateHashSize + MarkerSize
​ if len(proof) < minProofSize {
​ ​ return nil, fmt.Errorf("proof too short for ValidateCertificate
enhancement: expected at least %d bytes, got %d", minProofSize, len(proof))
​ }

Figure B.2: Part of the EnhanceProof function in
validatecertificate_proof_enhancer.go#L36–L42

// EnhanceProof implements ProofEnhancer for CustomDA
func (e *ReadPreimageProofEnhancer) EnhanceProof(ctx context.Context,
messageNum arbutil.MessageIndex, proof []byte) ([]byte, error) {
​ batchContainingMessage, found, err :=
e.inboxTracker.FindInboxBatchContainingMessage(messageNum)
​ if err != nil {
​ ​ return nil, err
​ }

​
 Trail of Bits​ 16​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/validator/proofenhancement/readpreimage_proof_enhancer.go#L73-L87
https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/validator/proofenhancement/validatecertificate_proof_enhancer.go#L36-L42

​ if !found {
​ ​ return nil, fmt.Errorf("Couldn't find batch for message #%d to
enhance proof", messageNum)
​ }

Figure B.3: Part of the EnhanceProof function in
readpreimage_proof_enhancer.go#L39–L46

●​ validateCertificate does not check that the first byte of the certificate is the
DACertificateMessageHeaderFlag.

validator := e.dapRegistry.GetValidator(certificate[0])
if validator == nil {
 return nil, fmt.Errorf("no validator registered for certificate type
0x%02x", certificate[0])
}

Figure B.4: Part of the EnhanceProof function in
readpreimage_proof_enhancer.go#L104–107

●​ validateCertificate does not check the length of MinCertificateSize.
Semantically, the highlighted check is equivalent to checking if len == 0, since
MinCertificateSize is 1. However, if MinCertificateSize were to change,
then this could become a problem.

// Validate certificate format
if len(certificate) < MinCertificateSize {
​ return nil, fmt.Errorf("certificate too short: expected at least %d
bytes, got %d", MinCertificateSize, len(certificate))
}

Figure B.5: Part of the EnhanceProof function in
readpreimage_proof_enhancer.go#L61–L64

●​ Different code styles are used in validatecertificate_proof_enhancer and
readpreimage_proof_enhancer. The first one uses offset while the second one
does not.

offset := originalProofLen
binary.BigEndian.PutUint64(enhancedProof[offset:], certSize)
offset += CertificateSizeFieldSize

// Add certificate
copy(enhancedProof[offset:], certificate)
offset += len(certificate)

// Add validity proof
copy(enhancedProof[offset:], validityProof)

​
 Trail of Bits​ 17​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/validator/proofenhancement/readpreimage_proof_enhancer.go#L39-L46
https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/validator/proofenhancement/readpreimage_proof_enhancer.go#L104-L107
https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/validator/proofenhancement/readpreimage_proof_enhancer.go#L61-L64

Figure B.6: Part of the EnhanceProof function in
validatecertificate_proof_enhancer.go#L110–L119

// Copy original proof up to the CustomDA marker data
copy(enhancedProof, proof[:markerDataStart])

// Add certSize
binary.BigEndian.PutUint64(enhancedProof[markerDataStart:], certSize)

// Add certificate
copy(enhancedProof[markerDataStart+CertificateSizeFieldSize:], certificate)

// Add custom proof
copy(enhancedProof[markerDataStart+CertificateSizeFieldSize+len(certificate):]
, customProof)

Figure B.7: Part of the EnhanceProof function in
readimage_proof_enhancer.go#L126–L32

​
 Trail of Bits​ 18​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/validator/proofenhancement/validatecertificate_proof_enhancer.go#L110-L119
https://github.com/OffchainLabs/nitro/blob/3f226a0ecf91ceed3688a2fc41969fae1f32d03d/validator/proofenhancement/readpreimage_proof_enhancer.go#L126-L136

C. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

On January 12, 2026, Trail of Bits reviewed the fixes and mitigations implemented by the
Offchain Labs team for the issues identified in this report. We reviewed each fix to
determine its effectiveness in resolving the associated issue.

In summary, Offchain Labs has resolved all four issues disclosed in this report. For
additional information, please see the Detailed Fix Review Results below.

ID Title Severity Status

1 Missing validations in executeValidatePreimage Undetermined Resolved

2 Missing sequencer message length checks Low Resolved

3 Unclear why the blob decode error is not being
propagated

Informational Resolved

4 Unclear behavior during sequencer message parsing Low Resolved

Detailed Fix Review Results
TOB-EXTDA-1: Missing validations in executeValidatePreimage
Resolved in PR #398. Validations on the preImageType and ptr inputs have been added in
the executeValidatePreImage function. Additionally, PR #4187 made changes to the
serialize_proof function for the ValidateCertificate opcode on the
preimage_type.

TOB-EXTDA-2: Missing sequencer message length checks
Resolved in PR #4214. A length check on the sequencer message has been added to the
recoverInternal function of the readerForBlobReader struct before the message is
indexed.

TOB-EXTDA-3: Unclear why the blob decode error is not being propagated
Resolved in PR #4182. A comment has been added explaining why the error is not
propagated.

​
 Trail of Bits​ 19​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/OffchainLabs/nitro-contracts/pull/398
https://github.com/OffchainLabs/nitro/pull/4187
https://github.com/OffchainLabs/nitro/pull/4214
https://github.com/OffchainLabs/nitro/pull/4182

TOB-EXTDA-4: Unclear behavior during sequencer message parsing
Resolved in PR #4149. The payload is set to nil to correctly handle it as an empty batch.

​
 Trail of Bits​ 20​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

http://github.com/OffchainLabs/nitro/pull/4149

D. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been
sufficiently addressed.

Fix Status

Status Description

Undetermined The status of the issue was not determined during this engagement.

Unresolved The issue persists and has not been resolved.

Partially Resolved The issue persists but has been partially resolved.

Resolved The issue has been sufficiently resolved.

​
 Trail of Bits​ 21​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review assessments, supporting client
organizations in the technology, defense, blockchain, and finance industries, as well as
government entities. Notable clients include HashiCorp, Google, Microsoft, Western Digital,
Uniswap, Solana, Ethereum Foundation, Linux Foundation, and Zoom.

To keep up with our latest news and announcements, please follow @trailofbits on X or
LinkedIn and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact or email us at
info@trailofbits.com.

Trail of Bits, Inc.​
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com​
info@trailofbits.com

​
 Trail of Bits​ 22​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/trailofbits/publications
https://x.com/trailofbits
https://www.linkedin.com/company/trail-of-bits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2025 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

Trail of Bits considers this report public information; it is licensed to Offchain Labs under
the terms of the project statement of work and has been made public at Offchain Labs’
request. Material within this report may not be reproduced or distributed in part or in
whole without Trail of Bits’ express written permission.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through sources other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
Trail of Bits performed all activities associated with this project in accordance with a
statement of work and an agreed-upon project plan.

Security assessment projects are time-boxed and often rely on information provided by a
client, its affiliates, or its partners. As a result, the findings documented in this report
should not be considered a comprehensive list of security issues, flaws, or defects in the
target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test software controls and
security properties. These techniques augment our manual security review work, but each
has its limitations. For example, a tool may not generate a random edge case that violates a
property or may not fully complete its analysis during the allotted time. A project’s time and
resource constraints also limit their use.

​
 Trail of Bits​ 23​ Offchain Labs Arbitrum Nitro External DA​
 PUBLIC​ ​ Security Assessment

https://github.com/trailofbits/publications

	Offchain Labs Arbitrum Nitro External DA
	Table of Contents
	
	
	
	Project Summary
	Project Targets
	Executive Summary
	Summary of Findings
	Detailed Findings
	1. Missing validations in executeValidatePreimage
	
	2. Missing sequencer message length checks
	
	3. Unclear why the blob decode error is not being propagated
	
	4. Unclear behavior during sequencer message parsing
	

	
	A. Vulnerability Categories
	B. Code Quality Issues
	
	C. Fix Review Results
	Detailed Fix Review Results

	D. Fix Review Status Categories
	
	About Trail of Bits
	
	Notices and Remarks

