
O�chain Labs BOLD and Delay Bu�er
Security Assessment (Summary Report)

May 2, 2024

Prepared for:

Harry Kalodner, Steven Goldfeder, and Ed Felten
Offchain Labs

Prepared by: Troy Sargent and Simone Monica



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Offchain
Labs under the terms of the project statement of work and has been made public at
Offchain Labs’ request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC

https://github.com/trailofbits/publications


Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 4
Project Targets 5
Executive Summary 6
Summary of Findings 8
Detailed Findings 9

1. depositIntoPool function allows deposits during ongoing challenges 9
2. Lack of validation of mini stakes configuration 10
3. Potential token incompatibilities in staking pool 11
4. Use of incorrect proxy admin contracts 12
5. Unused custom errors 14
6. Misuse of expectRevert cheat code hides test failing 15

A. Vulnerability Categories 18
B. Mutation Testing 20
C. Analysis of Bottom-Up Timers 22
D. Code Quality Recommendations 23
E. Work Towards Formal Specification 24

Trail of Bits 3 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC



Project Summary

Contact Information
The following project manager was associated with this project:

Mary O’Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Troy Sargent, Consultant Simone Monica, Consultant
troy.sargent@trailofbits.com simone.monica@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

April 4, 2024 Pre-project kickoff call

April 15, 2024 Status update meeting #1

April 22, 2024 Status update meeting #2

April 29, 2024 Delivery of report draft

April 29, 2024 Report readout meeting

May 2, 2024 Delivery of summary report

Trail of Bits 4 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC



Project Targets

The engagement involved a review and testing of the targets listed below.

BOLD protocol
Repository https://github.com/OffchainLabs/bold

Version c4e068b568ff662f49ed191c5c3188ea7b6138b2

Type Solidity

Platform Ethereum/Arbitrum

Nitro contracts
Repository https://github.com/OffchainLabs/nitro-contracts/

Version PR #160

Type Solidity

Platform Ethereum/Arbitrum

Trail of Bits 5 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC

https://github.com/OffchainLabs/bold
https://github.com/OffchainLabs/nitro-contracts/
https://github.com/OffchainLabs/nitro-contracts/pull/160


Executive Summary

Engagement Overview
Offchain Labs engaged Trail of Bits to review the security of its Bounded Liquidity Delay
(BOLD) challenge protocol’s updates, an assertion staking pool contract, and the added
delay buffer feature in the sequencer inbox. The BOLD protocol’s implementation has
multiple updates; for example, it is now possible to have multiple big-step levels, each level
can have its own configured mini stake amount, and, in particular, the logic tracking edges’
timers have been changed from top-down to bottom-up. The assertion staking pool
contract allows independent users to stake on a specific assertion by putting together the
minimal token amount needed. The delay buffer feature aims to provide stronger
guarantees of censorship resistance.

A team of two consultants conducted the review from April 8 to April 26, 2024, for a total of
five engineer-weeks of effort. We received the delay buffer’s code towards the end of the
audit, and it was reviewed by one engineer for a total of one engineer-week of effort. With
full access to source code and documentation, we performed static and dynamic testing of
the codebase, using automated and manual processes.

Observations and Impact
We spent the majority of our time on the BOLD changes, checking whether any of them
would allow a malicious party to win a challenge by confirmation or prevent an honest
party from winning challenges (e.g., by making it impossible for an honest party to continue
participating in a challenge). We also checked for possible misconfiguration of the new
parameters. We reviewed the assertion staking pool contract to check whether it was
possible to steal tokens, whether a malicious user could change the assertion that the
contract will stake to, and whether the users can withdraw their tokens once the challenge
is finished and won. Finally, we reviewed the delay buffer feature to check whether it
correctly implements the specifications and whether a malicious sequencer could bypass it
and censor transactions.

We did not uncover any serious issues in the implementation. However, we identified areas
for improvement in data validation that would help reduce the attack surface and the
possibility of mistakes (TOB-OFFBOLD-1, TOB-OFFBOLD-2, and TOB-OFFBOLD-3).

Recommendations
Based on the findings identified during the security review, Trail of Bits recommends that
Offchain Labs take the following steps:

● Remediate the findings uncovered during this review.

Trail of Bits 6 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC



● Add mutation testing to the software development lifecycle to improve the quality of
the testing suite (see appendix B).

Trail of Bits 7 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC



Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 depositIntoPool function allows deposits during
ongoing challenges

Data Validation Low

2 Lack of validation of mini stakes configuration Data Validation Informational

3 Potential token incompatibilities in staking pool Data Validation Informational

4 Use of incorrect proxy admin contracts Undefined
Behavior

Informational

5 Unused custom errors Undefined
Behavior

Informational

6 Misuse of expectRevert cheat code hides test
failing

Testing Informational

Trail of Bits 8 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC



Detailed Findings

1. depositIntoPool function allows deposits during ongoing challenges

Severity: Low Difficulty: Medium

Type: Data Validation Finding ID: TOB-OFFBOLD-1

Target: contracts/src/assertionStakingPool/AssertionStakingPool.sol

Description
The depositIntoPool function allows depositing tokens even when the assertion was
already created or there are already more tokens than required to create the assertion.

function depositIntoPool(uint256 _amount) external {
depositedTokenBalances[msg.sender] += _amount;
stakeToken.safeTransferFrom(msg.sender, address(this), _amount);
emit StakeDeposited(msg.sender, _amount);

}

Figure 1.1: The depositIntoPool function (AssertionStakingPool.sol#L43–L47)

In the best case scenario, where the assertion created wins and all the tokens are returned,
no users would lose tokens. However, tokens deposited when the challenge is ongoing
would allow users’ who previously deposited tokens that are now locked in the challenge to
withdraw their tokens from the new depositor’s tokens.

Exploit Scenario
Alice deposits tokens into the pool, unaware that there is already an ongoing challenge.
Eve, who deposited tokens that are now locked in the challenge, withdraws her tokens
from Alice’s newly deposited tokens. The challenge ends up losing and Alice unknowingly
loses her tokens, instead of Eve.

Recommendations
Short term, in the depositIntoPool function, modify the code to validate that the
assertion is not already created and that the current contract’s token balance is less than
what is required to create an assertion.

Long term, when designing a contract that holds users’ tokens, minimize the attack surface
as much as possible by not accepting deposits after a target threshold has been reached.

Trail of Bits 9 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC

https://github.com/OffchainLabs/bold/blob/c4e068b568ff662f49ed191c5c3188ea7b6138b2/contracts/src/assertionStakingPool/AssertionStakingPool.sol#L43-L47


2. Lack of validation of mini stakes configuration

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-OFFBOLD-2

Target: contracts/src/challengeV2/EdgeChallengeManager.sol

Description
The mini stake amounts set during initialization are not validated to decrease for each level
(from block to single-step execution) despite that expectation being stated in the Arbitrum
Improvement Proposal related to BOLD:

Challenge-bonds, per level: 3600/1000/100/10 ETH - required from validators to open
challenges against an assertion observed on Ethereum, for each level. Note that “level”
corresponds to the level of granularity at which the interactive dissection game gets
played over, starting at the block level, moving on to a range of WASM execution steps,
and then finally to the level of a single step of execution.

The staking configuration is important to disincentivize fraud and make it feasible for an
honest validator to meet the capital requirements for defending assertions.

stakeAmounts = _stakeAmounts;

Figure 2.1: The configuration of bonds is not validated.
(bold/contracts/src/challengeV2/EdgeChallengeManager.sol#365)

Recommendations
Short term, modify the code to validate that the amount of stake required for each level
decreases as the challenge progresses.

Long term, enforce expectations in code to prevent misconfigurations that have important
ramifications on the protocol’s incentives.

Trail of Bits 10 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC

https://forum.arbitrum.foundation/t/aip-bold-permissionless-validation-for-arbitrum/23232
https://forum.arbitrum.foundation/t/aip-bold-permissionless-validation-for-arbitrum/23232
https://github.com/OffchainLabs/bold/blob/c4e068b568ff662f49ed191c5c3188ea7b6138b2/contracts/src/challengeV2/EdgeChallengeManager.sol#L365-L365


3. Potential token incompatibilities in staking pool

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-OFFBOLD-3

Target: contracts/src/assertionStakingPool/AssertionStakingPool.sol

Description
The assertion staking pool is not currently reusable and transfers its entire allowance to the
rollup for the requiredStake amount. In light of this, the use of the
safeIncreaseAllowance function does not pose incompatibilities with tokens such as
USDT, which require the current allowance to be zero when calling the approve function.
However, it may be desirable to support reusable assertion staking pools in the future, and
this subtlety should be considered in that event.

function createAssertion() external {
uint256 requiredStake = getRequiredStake();
// approve spending from rollup for newStakeOnNewAssertion call
stakeToken.safeIncreaseAllowance(rollup, requiredStake);
// reverts if pool doesn't have enough stake and if assertion has already been

asserted
IRollupUser(rollup).newStakeOnNewAssertion(requiredStake, assertionInputs,

assertionHash);
}

Figure 3.1: Pool approves rollup to spend requiredStake.
(bold/contracts/src/assertionStakingPool/AssertionStakingPool.sol#50–56)

Recommendations
Short term, document the potential incompatibility and ensure that each transfer uses the
entire allowance.

Long term, use the forceApprove function if the contract is revised to be reusable .

Trail of Bits 11 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC

https://github.com/OffchainLabs/bold/blob/c4e068b568ff662f49ed191c5c3188ea7b6138b2/contracts/src/assertionStakingPool/AssertionStakingPool.sol#L50-L56


4. Use of incorrect proxy admin contracts

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-OFFBOLD-4

Target: contracts/src/rollup/BOLDUpgradeAction.sol

Description
The upgradeSurroundingContracts function updates several contracts. However, when
fetching the current implementation of the getProxyImplementation function, it uses
the wrong proxy admin contracts for the sequencer inbox and outbox contracts—
PROXY_ADMIN_BRIDGE and PROXY_ADMIN_REI, respectively.

function upgradeSurroundingContracts(address newRollupAddress) private {
// upgrade each of these contracts to an implementation that allows
// the rollup address to be set to the new rollup address
...
TransparentUpgradeableProxy sequencerInbox =

TransparentUpgradeableProxy(payable(SEQ_INBOX));
address currentSequencerInboxImpl =

PROXY_ADMIN_BRIDGE.getProxyImplementation(sequencerInbox);
PROXY_ADMIN_SEQUENCER_INBOX.upgrade(sequencerInbox, IMPL_SEQUENCER_INBOX);
ISequencerInbox(SEQ_INBOX).updateRollupAddress();
PROXY_ADMIN_SEQUENCER_INBOX.upgrade(sequencerInbox,

currentSequencerInboxImpl);
...
TransparentUpgradeableProxy outbox =

TransparentUpgradeableProxy(payable(OUTBOX));
address currentOutboxImpl = PROXY_ADMIN_REI.getProxyImplementation(outbox);
PROXY_ADMIN_OUTBOX.upgrade(outbox, IMPL_OUTBOX);
IOutbox(OUTBOX).updateRollupAddress();
PROXY_ADMIN_OUTBOX.upgrade(outbox, currentOutboxImpl);

}

Figure 4.1: The upgradeSurroundingContracts function
(BOLDUpgradeAction.sol#L388–L415)

Given that the implementation of the getProxyImplementation function does not use
any state-related variables (figure 4.2), the mistake does not cause a divergence and the
result is the same as if the correct proxy admin contracts were used.

function getProxyImplementation(TransparentUpgradeableProxy proxy) public view
virtual returns (address) {

// We need to manually run the static call since the getter cannot be

Trail of Bits 12 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC

https://github.com/OffchainLabs/bold/blob/b6522c0ef9f8e721a48cb0256ce11e939d9133b3/contracts/src/rollup/BOLDUpgradeAction.sol#L388-L415


flagged as view
// bytes4(keccak256("implementation()")) == 0x5c60da1b
(bool success, bytes memory returndata) =

address(proxy).staticcall(hex"5c60da1b");
require(success);
return abi.decode(returndata, (address));

}

Figure 4.2: The getProxyImplementation function (ProxyAdmin.sol#L21–L27)

Recommendations
Short term, when calling the getProxyImplementation function for the sequencer inbox
and outbox, use the PROXY_ADMIN_SEQUENCER_INBOX and PROXY_ADMIN_OUTBOX
contracts, respectively.

Long term, since the 5.0.0 release of the OpenZeppelin library has deprecated the
getProxyImplementation function, the code will eventually need to fetch the values
from storage.

Trail of Bits 13 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/ecd2ca2cd7cac116f7a37d0e474bbb3d7d5e1c4d/contracts/proxy/transparent/ProxyAdmin.sol#L21-L27
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v5.0.0


5. Unused custom errors

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-OFFBOLD-5

Target: src/libraries/Error.sol

Description
The custom errors declared in figure 5.1 are unused. It is unclear whether they are dead
code or errors that should be raised; however, they are never used due to missing checks.

/// @dev Thrown when atleast one new message must be read.
error NotDelayedFarEnough();
...
/// @dev Thrown when a batch post fails to prove a message delivery and sequencing
are synced within the delay threshold
error UnexpectedDelay(uint64 delayBlocks);

Figure 5.1: Errors declaration (Error.sol#L182–L192)

Recommendations
Short term, remove these errors if they are unused, or apply the correct checks.

Long term, thoroughly document the different error types and when they should be used
and why; review the code to correct any divergences.

Trail of Bits 14 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts/blob/3f8e71106a5be82f6a9ab033165a0cb8ae7e51aa/src/libraries/Error.sol#L182-L192


6. Misuse of expectRevert cheat code hides test failing

Severity: Informational Difficulty: Low

Type: Testing Finding ID: TOB-OFFBOLD-6

Target: test/foundry/DelayBuffer.t.sol

Description
The testUpdateDepleteAndReplenish test uses the expectRevert cheat code with a
call to a library’s internal function. This cheat code should be used only with external
function calls because it cannot track calls to internal functions. In this instance, if the test
is run with verbosity turned on, the test stops and passes, as shown in figure 6.1.

[PASS] testUpdateDepleteAndReplenish() (gas: 60188)
Traces:
[60188] DelayBufferableTest::testUpdateDepleteAndReplenish()
├─ [0] VM::expectRevert(custom error f4844814:)
│ └─ ← ()
├─ [0] VM::warp(10)
│ └─ ← ()
├─ [0] VM::roll(10)
│ └─ ← ()
├─ [0] VM::warp(11)
│ └─ ← ()
├─ [0] VM::roll(11)
│ └─ ← ()
├─ [0] VM::expectRevert(custom error f4844814:)
│ └─ ← you must call another function prior to expecting a second revert
└─ ← you must call another function prior to expecting a second revert

Figure 6.1: Running the test with the forge test --match-test
testUpdateDepleteAndReplenish -vvvv command

However, if both the expectRevert cheat code and the subsequent function call are
removed, the test fails, as shown in figure 6.2.

[FAIL. Reason: assertion failed] testUpdateDepleteAndReplenish2() (gas: 116607)
Logs:
Error: a == b not satisfied [uint]

Left: 14399
Right: 14400

Traces:
[116607] DelayBufferableTest::testUpdateDepleteAndReplenish2()

Trail of Bits 15 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC



├─ [0] VM::warp(10)
│ └─ ← ()
├─ [0] VM::roll(10)
│ └─ ← ()
├─ [0] VM::warp(11)
│ └─ ← ()
├─ [0] VM::roll(11)
│ └─ ← ()
├─ [0] VM::roll(611)
│ └─ ← ()
├─ emit log(val: "Error: a == b not satisfied [uint]")
├─ emit log_named_uint(key: " Left", val: 14399 [1.439e4])
├─ emit log_named_uint(key: " Right", val: 14400 [1.44e4])
├─ [0] VM::store(VM: [0x7109709ECfa91a80626fF3989D68f67F5b1DD12D],

0x6661696c65640000000000000000000000000000000000000000000000000000,
0x0000000000000000000000000000000000000000000000000000000000000001)

│ └─ ← ()
└─ ← ()

Figure 6.2: Running testUpdateDepleteAndReplenish without expectRevert

The purpose of this test is to consume a small amount of buffer and then replenish it, but
the check for the latter state is failing, as shown in figure 6.3.

delayBuffer.update(25);

assertEq(delayBuffer.prevBlockNumber, 25);
assertEq(delayBuffer.prevSequencedBlockNumber, configBufferable.threshold + 11);
assertEq(delayBuffer.bufferBlocks, configBufferable.max);

Figure 6.3: Snippet of the test (DelayBuffer.t.sol#L189–L193)

The test is run with the replenishRateInBasis variable set to 714 and a buffer
maximum of 14400. When the delayBuffer.update(25) function is executed (figure
6.3), the prevBlockNumber variable equals 24. The buffer is updated in the calcBuffer
function (figure 6.4), where end is the argument passed to the update function (in our
case, 25) and start is the currently set prevBlockNumber (in our case, 24). The elapsed
variable will equal 1 then. However, rounding the operation down causes the test to fail
because it adds 0 to the buffer variable.

uint256 elapsed = end > start ? end - start : 0;
uint256 delay = sequenced > start ? sequenced - start : 0;
// replenishment rounds down and will not overflow since all inputs including
// replenishRateInBasis are cast from uint64 in calcPendingBuffer
buffer += (elapsed * replenishRateInBasis) / BASIS;

Figure 6.4: Snippet of the calcBuffer function (DelayBuffer.sol#L43–L47)

The correct way to test whether a replenish of exactly 1 occurs (i.e., from 13999 to 14000)
is to call the update function with an argument that is exactly equal to prevBlockNumber

Trail of Bits 16 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts/blob/3f8e71106a5be82f6a9ab033165a0cb8ae7e51aa/test/foundry/DelayBuffer.t.sol#L189-L193
https://github.com/OffchainLabs/nitro-contracts/blob/3f8e71106a5be82f6a9ab033165a0cb8ae7e51aa/src/bridge/DelayBuffer.sol#L43-L47


+ 15 because elapsed will be 15 and is the first value in the calculation for adding to the
buffer that rounds down to 1 and not 0.

Recommendations
Short term, to make the test pass, correct the test to not use expectRevert with internal
calls and to pass 39 as the argument for the last call to the update function.

Long term, use mutation testing to validate the correctness of the testing suite or identify
possible improvements (see appendix B).

Trail of Bits 17 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC



A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 18 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC



Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 19 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC



B. Mutation Testing

During our review, we ran two mutation testing tools, Necessist and slither-mutate, to
identify potential shortcomings in the test suite and implementation.

To use Necessist, run the following command:

necessist --framework foundry
test/challengeV2/EdgeChallengeManager.t.sol
test/challengeV2/EdgeChallengeManagerLib.t.sol

To use slither-mutate, run the following command:

slither-mutate src/challengeV2/EdgeChallengeManager.sol
--test-cmd='forge test --match-contract="EdgeChallengeManager"'

After reviewing the results, we identified missing test coverage for the following error case:

if (args.endHistoryRoot != claimStateData.assertionState.endHistoryRoot) {
revert EndHistoryRootMismatch(args.endHistoryRoot,

claimStateData.assertionState.endHistoryRoot);
}

Figure B.1: Reverting path with missing test case
(bold/contracts/src/challengeV2/EdgeChallengeManager.sol#398–400)

We have provided a test that eliminates this gap and ensures regressions will be identified,
as shown in figure B.2.

function testRevertMismatchedEndHistoryRoot() public {
(MockAssertionChain assertionChain, EdgeChallengeManager challengeManager,

bytes32 genesis) = deploy();

AssertionState memory a1State = StateToolsLib.randomState(
rand, GlobalStateLib.getInboxPosition(genesisState.globalState), h1,

MachineStatus.FINISHED
);

(bytes32[] memory states, bytes32[] memory exp) =
appendRandomStatesBetween(genesisStates(),

StateToolsLib.mockMachineHash(a1State), height1);
a1State.endHistoryRoot = MerkleTreeLib.root(exp);

bytes32 a1 = assertionChain.addAssertion(
genesis, genesisHeight + height1, inboxMsgCountAssertion, genesisState,

a1State, 0
);
bytes32 badEndHistoryRoot = MerkleTreeLib.root(exp) &

Trail of Bits 20 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC

https://github.com/trailofbits/necessist
https://github.com/crytic/slither/blob/master/slither/tools/mutator/README.md
https://github.com/OffchainLabs/bold/blob/c4e068b568ff662f49ed191c5c3188ea7b6138b2/contracts/src/challengeV2/EdgeChallengeManager.sol#L398-L400


0x00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
vm.expectRevert(abi.encodeWithSelector(EndHistoryRootMismatch.selector,

badEndHistoryRoot, a1State.endHistoryRoot));
challengeManager.createLayerZeroEdge(

CreateEdgeArgs({
level: 0,
endHistoryRoot: badEndHistoryRoot,
endHeight: height1,
claimId: a1,
prefixProof: abi.encode(

ProofUtils.expansionFromLeaves(states, 0, 1),
ProofUtils.generatePrefixProof(1, ArrayUtilsLib.slice(states, 1,

states.length))
),

proof: abi.encode(
ProofUtils.generateInclusionProof(ProofUtils.rehashed(states),

states.length - 1),
genesisStateData,
AssertionStateData(a1State, genesisAssertionHash, bytes32(0))
)

})
);

}

Figure B.2: Test case for the EndHistoryRootMismatch error

Trail of Bits 21 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC



C. Analysis of Bottom-Up Timers

This iteration of the BOLD protocol removed the notion of edges inheriting their ancestor’s
timers and in its place introduced bottom-up timers. The following rules and description
explain this concept in terms of dominance relations from graph theory. Parent nodes
accumulate the unrivaled time according to two rules:

1. If an edge immediately dominates a layer zero edge, count the maximum of its
successors’ unrivaled time towards its own unrivaled time.

2. Otherwise, count the minimum of its successors’ unrivaled time towards its own
unrivaled time.

To accumulate the timers bottom-up, a validator can perform a reverse post order traversal to
propagate the timers upward through the graph, confirming edges that have sufficient
unrivaled time. (Note: only one rival can be confirmed.) If there is a path from (V,E) such that
the sum of all unrivaled times (not the cached total) of nodes dominated by V and
post-dominated by E and E itself is greater than or equal to the challenge period, V can be
confirmed.

Trail of Bits 22 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC



D. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
implementing them may enhance code readability and prevent the introduction of
vulnerabilities in the future.

● Simplify machine status condition. The condition is checking that the machine
status is not the ERRORED state. The machine status can have three states, and at
the start of this function, there is a check to validate whether the machine status is
ERRORED or FINISHED. Ensure that this check is equal to FINISHED so it is clear
which status should enter the branch.

if (assertion.afterState.machineStatus != MachineStatus.ERRORED &&
afterStateCmpMaxInbox < 0) {

Figure D.1: Snippet of the createNewAssertion function (RollupCore.sol#L427)

● Improve emission of custom error. The EdgeNotExists error is used in this
instance where it should be an unreachable case. Using a different error specific for
an unreachable case would improve debugging.

● Correct typo. The error message should be UNEXPECTED_ROLLUP_ADDR instead of
UNEXPCTED_ROLLUP_ADDR.

● Do not return a value from a function if it is not needed. The
updateTimerCache function returns a Boolean value, but in the places where it is
called, it is not used.

● Update documentation:

○ The confirmEdgeByTime function still has edges that inherit time from
parents.

○ The BufferData structure has the wrong arguments in the NatSpec
comments.

○ Various comments for the update function mention a prev delay, but this
should have been replaced with prevBlockNumber.

● Improve imports:

○ The DelayBuffer library imports custom errors that are not used.

○ The NotDelayBufferable error is imported twice in the SequencerInbox
contract.

Trail of Bits 23 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC

https://github.com/OffchainLabs/bold/blob/9d0d70341af08b6f8a7255cd7d16695344e726f2/contracts/src/rollup/RollupCore.sol#L427
https://github.com/OffchainLabs/bold/blob/582f3f055774fe9f0b2c4f27f8cacbd9fadf9f37/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L535
https://github.com/OffchainLabs/bold/blob/9d0d70341af08b6f8a7255cd7d16695344e726f2/contracts/src/rollup/BOLDUpgradeAction.sol#L470
https://github.com/OffchainLabs/bold/blob/582f3f055774fe9f0b2c4f27f8cacbd9fadf9f37/contracts/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L484-L493
https://github.com/OffchainLabs/bold/blob/582f3f055774fe9f0b2c4f27f8cacbd9fadf9f37/contracts/src/challengeV2/EdgeChallengeManager.sol#L72-L80
https://github.com/OffchainLabs/nitro-contracts/blob/3f8e71106a5be82f6a9ab033165a0cb8ae7e51aa/src/bridge/DelayBufferTypes.sol#L19-L34
https://github.com/OffchainLabs/nitro-contracts/blob/3f8e71106a5be82f6a9ab033165a0cb8ae7e51aa/src/bridge/DelayBuffer.sol#L66-L80
https://github.com/OffchainLabs/nitro-contracts/blob/3f8e71106a5be82f6a9ab033165a0cb8ae7e51aa/src/bridge/DelayBuffer.sol#L7
https://github.com/OffchainLabs/nitro-contracts/blob/3f8e71106a5be82f6a9ab033165a0cb8ae7e51aa/src/bridge/SequencerInbox.sol#L33-L36


E. Work Towards Formal Specification

During our review, we experimented with developing specifications in the Certora
Verification Language (CVL) and checking them with the Certora Prover. We recommend
reviewing and adapting these specifications as needed. Because of errors returned in the
prover and the potential for unsound/vacuous rules (e.g., over-constraining preconditions),
we do not claim that these rules have formally proven these desired properties of the
implementation.

The rule noTwoRivalsCanBeConfirmed starts with an unconfirmed edge, A; allows the
prover to model any call sequence; and then asserts that there is no rival of A that is also
confirmed.

The rule rivalsHaveSameLength starts with an edge, X; allows the prover to model any
call sequence; and then asserts that there is no rival of X that has a history commitment
with a different length.

methods {
function createLayerZeroEdge(EdgeChallengeManager.CreateEdgeArgs) external

returns (bytes32);
function getEdge(bytes32 edgeId) external returns

(EdgeChallengeManager.ChallengeEdge) envfree;
function hasRival(bytes32 edgeId) external returns (bool);
function firstRival(bytes32 mutualId) external returns (bytes32);
function confirmedRival(bytes32 mutualId) external returns (bytes32);
function edgeExists(bytes32 edgeId) external returns (bool);
function calculateMutualId(

uint8 level,
bytes32 originId,
uint256 startHeight,
bytes32 startHistoryRoot,
uint256 endHeight

) external returns (bytes32) envfree;
function edgeLength(bytes32 edgeId) external returns (uint256);
function timeUnrivaled(bytes32 edgeId) external returns (uint256) envfree;

}

rule noTwoRivalsCanBeConfirmed() {

env e;
method f;
calldataarg args;

bytes32 edge1;
bytes32 anyRivalEdgeId;

EdgeChallengeManager.ChallengeEdge edge1Data;

Trail of Bits 24 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC



edge1Data = getEdge(e, edge1);

bytes32 mutualId = calculateMutualId(edge1Data.level, edge1Data.originId,
edge1Data.startHeight, edge1Data.startHistoryRoot, edge1Data.endHeight);

require(!hasRival(e, edge1) && confirmedRival(e, mutualId) == to_bytes32(0));

f(e,args);

require(hasRival(e, edge1));
require(confirmedRival(e, mutualId) == edge1);
assert(getEdge(e, edge1).status == EdgeChallengeManager.EdgeStatus.Confirmed);

EdgeChallengeManager.ChallengeEdge edge2Data;
edge2Data = getEdge(e, anyRivalEdgeId);
bytes32 mutualId2 = calculateMutualId(edge2Data.level, edge2Data.originId,

edge2Data.startHeight, edge2Data.startHistoryRoot, edge2Data.endHeight);
require(mutualId == mutualId2);

assert(edge2Data.status != EdgeChallengeManager.EdgeStatus.Confirmed);
}

rule rivalsHaveSameLength() {
env e;
method f;
calldataarg args;
bytes32 edge1;
bytes32 anyRivalEdgeId;

EdgeChallengeManager.ChallengeEdge edge1Data;
edge1Data = getEdge(e, edge1);

bytes32 mutualId = calculateMutualId(edge1Data.level, edge1Data.originId,
edge1Data.startHeight, edge1Data.startHistoryRoot, edge1Data.endHeight);

f(e,args);

require(hasRival(e, edge1));

EdgeChallengeManager.ChallengeEdge edge2Data;
edge2Data = getEdge(e, anyRivalEdgeId);
bytes32 mutualId2 = calculateMutualId(edge2Data.level, edge2Data.originId,

edge2Data.startHeight, edge2Data.startHistoryRoot, edge2Data.endHeight);
require(mutualId == mutualId2);

uint256 length1 = edgeLength(e, edge1);
uint256 length2 = edgeLength(e, anyRivalEdgeId);
assert(length1 == length2);

}

Figure E.1: Initial work towards specifying BOLD implementation in CVL

Trail of Bits 25 Offchain BOLD and Delay Buffer Security Assessment
PUBLIC


