
L1-L3 Teleporter
Security Assessment (Summary Report)

March 18, 2024

Prepared for:

Harry Kalodner, Rachel Bousfield, Lee Bousfield, Steven Goldfeder, and Ed Felten
Offchain Labs

Prepared by: Troy Sargent and Simone Monica



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Offchain Labs Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Offchain
Labs under the terms of the project statement of work and has been made public at
Offchain Labs’ request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Offchain Labs Security Assessment
PUBLIC

https://github.com/trailofbits/publications


Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 4
Project Targets 5
Executive Summary 6
Summary of Findings 7
Detailed Findings 8

1. The _setupRole function is deprecated 8
2. Vacuous unit tests 9
3. Suggested refactorings to make precedence explicit and simplify code 11
4. Undocumented struct fields 14
5. Teleport function should document that contract callers should be able to create
retryable tickets 15

A. Vulnerability Categories 16

Trail of Bits 3 Offchain Labs Security Assessment
PUBLIC



Project Summary

Contact Information
The following project manager was associated with this project:

Mary O’Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Troy Sargent, Consultant Simone Monica, Consultant
troy.sargent@trailofbits.com simone.monica@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

February 9, 2024 Pre-project kickoff call

February 20, 2024 Delivery of report draft

February 20, 2024 Report readout meeting

March 18, 2024 Delivery of summary report

Trail of Bits 4 Offchain Labs Security Assessment
PUBLIC

mailto:mary.obrien@trailofbits.com
mailto:josselin.feist@trailofbits.com
mailto:troy.sargent@trailofbits.com
mailto:simone.monica@trailofbits.com


Project Targets

The engagement involved a review and testing of the following target.

L1-L3 Teleporter
Repository https://github.com/OffchainLabs/l1-l3-teleport-contracts

Version 6a764526843965ace519c6e066fc8d90e9d43fbe

Type Smart contract

Platform EVM

Trail of Bits 5 Offchain Labs Security Assessment
PUBLIC



Executive Summary

Engagement Overview
Offchain Labs engaged Trail of Bits to review the security of the L1-L3 Teleporter contracts.
The L1-L3 Teleporter provides a way to perform ERC20 transfers from Ethereum mainnet to
Orbit chains via Arbitrum Nitro.

A team of two consultants conducted the review from February 12 to February 16, 2024, for
a total of two engineer-weeks of effort. With full access to source code and documentation,
we performed static and dynamic testing of the contracts, using automated and manual
processes.

Observations and Impact
Despite the underlying complexity of the inbox, token bridge, and ArbOS support for
retryable transactions, the L1-L3 teleporter contracts enabled the interactions necessary to
perform L1-L3 token transfers without exposing users to much additional risk. Specifically,
the L1-L3 teleporter design segregates each transfer into a unique contract for each
sender-receiver pair and supports pausing transfers, limiting the amount of funds that
could be lost should a vulnerability be found. We focused on issues that could allow the
theft of funds, cause funds to be trapped in the smart contracts, or result in charging
incorrect fees.

Our review did not uncover any severe vulnerabilities or design flaws. In this report, we
provide a few suggestions that will increase that quality of the code and make it more
maintainable for future versions of the protocol.

Recommendations
We recommend performing additional integration testing and manual testing on a
developer/test network prior to deployment.

Trail of Bits 6 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/l1-l3-teleport-contracts/commit/6a764526843965ace519c6e066fc8d90e9d43fbe


Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 The _setupRole function is deprecated Patching Informational

2 Vacuous unit tests Testing Informational

3 Suggested refactorings to make precedence
explicit and simplify code

Undefined
Behavior

Informational

4 Undocumented struct fields Undefined
Behavior

Informational

5 Teleport function should document that contract
callers should be able to create retryable tickets

Configuration Informational

Trail of Bits 7 Offchain Labs Security Assessment
PUBLIC



Detailed Findings

1. The _setupRole function is deprecated

Severity: Informational Difficulty: Low

Type: Patching Finding ID: TOB-ARBTEL-1

Target: contracts/L1Teleporter.sol

Description
The L1Teleporter contract inherits the Openzeppelin’s AccessControl contract. In the
constructor function, the contract uses the _setupRole function to give the
DEFAULT_ADMIN_ROLE to the _admin address and PAUSER_ROLE to the _pauser address
(figure 1.1). However, the _setupRole function is deprecated in favor of the _grantRole
function (figure 1.2).

constructor(address _l2ForwarderFactory, address _l2ForwarderImplementation, address
_admin, address _pauser)

L2ForwarderPredictor(_l2ForwarderFactory, _l2ForwarderImplementation)
{

_setupRole(DEFAULT_ADMIN_ROLE, _admin);
_setupRole(PAUSER_ROLE, _pauser);

}

Figure 1.1: The constructor function (L1Teleporter.sol#L24-L29)

* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {

_grantRole(role, account);
}

Figure 1.2: The _setupRole function (AccessControl.sol#L204-L208)

Recommendations
Short term, use the _grantRole function instead of the _setupRole function.

Long term, when using third-party libraries, make sure to accurately review the
documentation and follow recommendations when using the libraries.

Trail of Bits 8 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/l1-l3-teleport-contracts/blob/6a764526843965ace519c6e066fc8d90e9d43fbe/contracts/L1Teleporter.sol#L24-L29
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.9.4/contracts/access/AccessControl.sol#L204-L208


2. Vacuous unit tests

Severity: Informational Difficulty: Low

Type: Testing Finding ID: TOB-ARBTEL-2

Target: test/Teleporter.t.sol

Description
The tests for the fee logic of the L1Teleporter contract are tautological and assert that
the calculation of the function being tested is equivalent to the same calculation. While this
may increase code coverage, it does not specify what is correct, but rather defines the
implementation as correct. Concrete values should be used instead of reperforming the
calculation.

assertEq(
standardEth,
standardCosts.l1l2TokenBridgeCost + standardCosts.l2ForwarderFactoryCost

+ standardCosts.l2l3TokenBridgeCost,
"standardEth"

);

// we only check RetryableGasCosts once because it'll be the same for all modes
assertEq(

standardCosts.l1l2FeeTokenBridgeCost,
gasParams.l1l2FeeTokenBridgeGasLimit * gasParams.l2GasPriceBid

+ gasParams.l1l2FeeTokenBridgeMaxSubmissionCost,
"l1l2FeeTokenBridgeCost"

);
assertEq(

standardCosts.l1l2TokenBridgeCost,
gasParams.l1l2TokenBridgeGasLimit * gasParams.l2GasPriceBid +

gasParams.l1l2TokenBridgeMaxSubmissionCost,
"l1l2TokenBridgeCost"

);
assertEq(

standardCosts.l2ForwarderFactoryCost,
gasParams.l2ForwarderFactoryGasLimit * gasParams.l2GasPriceBid

+ gasParams.l2ForwarderFactoryMaxSubmissionCost,
"l2ForwarderFactoryCost"

);
assertEq(

standardCosts.l2l3TokenBridgeCost,
gasParams.l2l3TokenBridgeGasLimit * gasParams.l3GasPriceBid +

gasParams.l2l3TokenBridgeMaxSubmissionCost,
"l2l3TokenBridgeCost"

);

Trail of Bits 9 Offchain Labs Security Assessment
PUBLIC



}

Figure 2.1: Test reimplementing contract’s calculation
(l1-l3-teleport-contracts/test/Teleporter.t.sol#201–231)

Recommendations
Short term, add unit tests that explicitly specify expected values, and perform integration
testing against a devnet deployment of Arbitrum Nitro.

Long term, create and implement testing plans as part of the design and development of
new features.

Trail of Bits 10 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/l1-l3-teleport-contracts/blob/6a764526843965ace519c6e066fc8d90e9d43fbe/test/Teleporter.t.sol#L201-L231


3. Suggested refactorings to make precedence explicit and simplify code

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-ARBTEL-3

Target: contracts/L1Teleporter.sol,contracts/L2Forwarder.sol

Description
In the L1Teleporter and L2Forwarder contracts, some calculations chain arithmetic
operations and rely on the implicit precedence of the operators instead of making the
desired precedence syntactically explicit with parentheses (figures 3.1 and 3.2). In addition,
some calculations are redundant, and the values can be reused to clarify that the values
are expected to be equivalent (figures 3.2 and 3.3). Below are alternative implementations
that are more explicit.

diff --git a/contracts/L1Teleporter.sol b/contracts/L1Teleporter.sol
index 52d440f..f27e9f9 100644
--- a/contracts/L1Teleporter.sol
+++ b/contracts/L1Teleporter.sol
@@ -219,13 +219,13 @@ contract L1Teleporter is Pausable, AccessControl,
L2ForwarderPredictor, IL1Telep

returns (RetryableGasCosts memory results)
{

results.l1l2FeeTokenBridgeCost =
gasParams.l1l2FeeTokenBridgeMaxSubmissionCost
- + gasParams.l1l2FeeTokenBridgeGasLimit * gasParams.l2GasPriceBid;
+ + (gasParams.l1l2FeeTokenBridgeGasLimit * gasParams.l2GasPriceBid);

results.l1l2TokenBridgeCost =
- gasParams.l1l2TokenBridgeMaxSubmissionCost +
gasParams.l1l2TokenBridgeGasLimit * gasParams.l2GasPriceBid;
+ gasParams.l1l2TokenBridgeMaxSubmissionCost +
(gasParams.l1l2TokenBridgeGasLimit * gasParams.l2GasPriceBid);

results.l2ForwarderFactoryCost =
gasParams.l2ForwarderFactoryMaxSubmissionCost
- + gasParams.l2ForwarderFactoryGasLimit * gasParams.l2GasPriceBid;
+ + (gasParams.l2ForwarderFactoryGasLimit * gasParams.l2GasPriceBid);

results.l2l3TokenBridgeCost =
- gasParams.l2l3TokenBridgeMaxSubmissionCost +
gasParams.l2l3TokenBridgeGasLimit * gasParams.l3GasPriceBid;
+ gasParams.l2l3TokenBridgeMaxSubmissionCost +
(gasParams.l2l3TokenBridgeGasLimit * gasParams.l3GasPriceBid);

}

Figure 3.1: Suggested change to make desired precedence explicit
(l1-l3-teleport-contracts/contracts/L1Teleporter.sol#220-229)

Trail of Bits 11 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/l1-l3-teleport-contracts/blob/6a764526843965ace519c6e066fc8d90e9d43fbe/contracts/L1Teleporter.sol#L220-L229


diff --git a/contracts/L2Forwarder.sol b/contracts/L2Forwarder.sol
index b250e51..d617efa 100644
--- a/contracts/L2Forwarder.sol
+++ b/contracts/L2Forwarder.sol
@@ -96,7 +96,8 @@ contract L2Forwarder is IL2Forwarder {

// create retryable ticket
uint256 maxSubmissionCost =

IERC20Inbox(params.routerOrInbox).calculateRetryableSubmissionFee(0, 0);
- uint256 callValue = tokenBalance - maxSubmissionCost - params.gasLimit *
params.gasPriceBid;
+ uint256 totalFeeAmount = maxSubmissionCost + (params.gasLimit *
params.gasPriceBid);
+ uint256 callValue = tokenBalance - totalFeeAmount;

IERC20Inbox(params.routerOrInbox).createRetryableTicket({
to: params.to,
l2CallValue: callValue,

@@ -109,7 +110,7 @@ contract L2Forwarder is IL2Forwarder {
data: ""

});

- emit BridgedToL3(callValue, maxSubmissionCost + params.gasLimit *
params.gasPriceBid);
+ emit BridgedToL3(callValue, totalFeeAmount);

}

Figure 3.2: Suggested change to perform fee calculation once
(l1-l3-teleport-contracts/contracts/L2Forwarder.sol#99–112)

diff --git a/contracts/L1Teleporter.sol b/contracts/L1Teleporter.sol
index 52d440f..df545a8 100644
--- a/contracts/L1Teleporter.sol
+++ b/contracts/L1Teleporter.sol
@@ -133,14 +133,14 @@ contract L1Teleporter is Pausable, AccessControl,
L2ForwarderPredictor, IL1Telep

teleportationType = toTeleportationType({token: params.l1Token, feeToken:
params.l3FeeTokenL1Addr});

+ ethAmount = costs.l1l2TokenBridgeCost + costs.l2ForwarderFactoryCost;
if (teleportationType == TeleportationType.Standard) {

- ethAmount = costs.l1l2TokenBridgeCost + costs.l2ForwarderFactoryCost +
costs.l2l3TokenBridgeCost;
+ ethAmount += costs.l2l3TokenBridgeCost;

feeTokenAmount = 0;
} else if (teleportationType == TeleportationType.OnlyCustomFee) {

- ethAmount = costs.l1l2TokenBridgeCost + costs.l2ForwarderFactoryCost;
feeTokenAmount = costs.l2l3TokenBridgeCost;

} else {
- ethAmount = costs.l1l2TokenBridgeCost + costs.l1l2FeeTokenBridgeCost +
costs.l2ForwarderFactoryCost;
+ ethAmount += costs.l1l2FeeTokenBridgeCost;

feeTokenAmount = costs.l2l3TokenBridgeCost;

Trail of Bits 12 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/l1-l3-teleport-contracts/blob/6a764526843965ace519c6e066fc8d90e9d43fbe/contracts/L2Forwarder.sol#L99-L112


}
}

Figure 3.3: Suggested change to emphasize base fee amount for all types
(l1-l3-teleport-contracts/contracts/L1Teleporter.sol#136–147)

Recommendations
Short term, apply the refactorings suggested above.

Long term, prefer explicit precedence and reuse values where they are expected to be
identical rather than recomputing them.

Trail of Bits 13 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/l1-l3-teleport-contracts/blob/6a764526843965ace519c6e066fc8d90e9d43fbe/contracts/L1Teleporter.sol#L136-L147


4. Undocumented struct fields

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ARBTEL-4

Target: contracts/interfaces/IL1Teleporter.sol

Description
The fields of the structures, RetryableGasParams and RetryableGasCosts, are
undocumented, and it would be helpful to specify how and where these values are to be
used for reviewers and developers, especially considering how similar they are.

struct RetryableGasParams {
uint256 l2GasPriceBid;
uint256 l3GasPriceBid;
uint64 l2ForwarderFactoryGasLimit;
uint64 l1l2FeeTokenBridgeGasLimit;
uint64 l1l2TokenBridgeGasLimit;
uint64 l2l3TokenBridgeGasLimit;
uint256 l2ForwarderFactoryMaxSubmissionCost;
uint256 l1l2FeeTokenBridgeMaxSubmissionCost;
uint256 l1l2TokenBridgeMaxSubmissionCost;
uint256 l2l3TokenBridgeMaxSubmissionCost;

}

/// @notice Total cost for each retryable ticket.
struct RetryableGasCosts {

uint256 l1l2FeeTokenBridgeCost;
uint256 l1l2TokenBridgeCost;
uint256 l2ForwarderFactoryCost;
uint256 l2l3TokenBridgeCost;

}

Figure 4.1: Structs with undocumented fields
(l1-l3-teleport-contracts/contracts/interfaces/IL1Teleporter.sol#32–51)

Recommendations
Short term, document the structures’ fields.

Long term, require documentation as part of pull requests.

Trail of Bits 14 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/l1-l3-teleport-contracts/blob/6a764526843965ace519c6e066fc8d90e9d43fbe/contracts/interfaces/IL1Teleporter.sol#L32-L51


5. Teleport function should document that contract callers should be able to
create retryable tickets

Severity: Informational Difficulty: Low

Type: Configuration Finding ID: TOB-ARBTEL-5

Target: contracts/interfaces/IL1Teleporter.sol

Description
The L1Teleporter’s documentation of its teleport function does not mention that callers
of teleport may need to create retryable tickets to call rescueFunds on the
L2Forwarder should “teleporting” to L3 fail. If a contract is immutable and does not have
the capability to create retryable tickets, the sender’s funds may be irrecoverable.

/// @notice Start an L1 -> L3 transfer. msg.value sent must equal the total ETH cost
of all retryables.
/// Call `determineTypeAndFees` to calculate the total cost of retryables in
ETH and the L3's fee token.
/// If called by an EOA or a contract's constructor, the L2Forwarder will be
owned by the caller's address,
/// otherwise the L2Forwarder will be owned by the caller's alias.
/// @dev 2 retryables will be created: one to send tokens and ETH to the
L2Forwarder, and one to call the L2ForwarderFactory.
/// If TeleportationType is NonFeeTokenToCustomFeeL3, a third retryable will
be created to send the L3's fee token to the L2Forwarder.
/// ETH used to pay for the L2 -> L3 retryable is sent through the
l2CallValue of the call to the L2ForwarderFactory.
function teleport(TeleportParams calldata params) external payable;

Figure 5.1: Natspec of the teleport function
(l1-l3-teleport-contracts/contracts/interfaces/IL1Teleporter.sol#76–83)

Recommendations
Short term, document that contracts using the teleporter should include functionality to
create retryables in case they need to call rescueFunds on the L2.

Long term, review and implement user-facing documentation and SDKs for validations and
recommendations to make integration less error-prone.

Trail of Bits 15 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/l1-l3-teleport-contracts/blob/6a764526843965ace519c6e066fc8d90e9d43fbe/contracts/interfaces/IL1Teleporter.sol#L76-L83


A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 16 Offchain Labs Security Assessment
PUBLIC



Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 17 Offchain Labs Security Assessment
PUBLIC


