
Arbitrum Governance
Security Assessment

January 6, 2023

Prepared for:

Harry Kalodner, Steven Goldfeder, and Ed Felten

Offchain Labs

Prepared by: Gustavo Grieco, Troy Sargent, Jaime Iglesias, Nat Chin, and Tarun Bansal

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Offchain Labs Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Offchain
Labs under the terms of the project statement of work and has been made public at
Offchain Labs’s request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Offchain Labs Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 5

Project Summary 7

Project Goals 8

Project Targets 9

Project Coverage 10

Codebase Maturity Evaluation 12

Summary of Recommendations 15

Summary of Findings 16

Detailed Findings 18

1. Missing zero address checks 18

2. Missing event for state variable update 20

3. Anyone can reduce the vote power of vested tokens 21

4. Users can reduce quorum delegating their votes to the DAO treasury 23

5. Assumptions about OpenZeppelin contracts integration should be reviewed 25

6. Anyone can initialize an ArbitrumTimelock implementation contract 28

7. TokenDistributor does not allow to change recipients once configured 29

8. Governance proposal that rely on retryable tickets could be disabled 31

9. Admin role of L2GovernanceFactory on UpgradeExecutor is not revoked 33

10. Missing contract size check 35

Trail of Bits 3 Offchain Labs Security Assessment
PUBLIC

11. L2ArbitrumGateway trusts L2Token to return correct l1Address 36

12. Retryable tickets allow out-of-order execution of token bridge registration
functions 38

13. Assumption of all tokens being burned in outboundEscrowTransfer 41

14. Dead code in outboundTransferCustomRefund 45

15. Lack of contract existence checks in the gateway may not detect failed execution
47

16. Cross-chain message out-of-order execution impacts sequential proposal
execution 49

17. Retryable tickets used in governance proposals can be silently discarded 51

18. Lack of contract existence checks is error-prone when scheduling transactions
through the timelock 53

19. Potential overflow in TokenDistributor causes imprecise claims 56

A. Vulnerability Categories 57

B. Code Maturity Categories 59

C. Code Quality Recommendations 61

Trail of Bits 4 Offchain Labs Security Assessment
PUBLIC

Executive Summary

Engagement Overview
Arbitrum engaged Trail of Bits to review the security of its Governance and Bridge
contracts. From October 17 to December 9, 2022, a team of five consultants conducted a
security review of the client-provided source code, with 22 person-weeks of effort. Details
of the project’s timeline, test targets, and coverage are provided in subsequent sections of
this report.

Project Scope
Our testing efforts were focused on the identification of flaws that could result in a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with full knowledge of the system. We had access to the source code and
documentation. We performed static and manual testing of the target system and its
codebase, using both automated and manual processes

Summary of Findings
The audit uncovered significant flaws that could impact system confidentiality, integrity, or
availability. A summary of the findings and details on notable findings are provided below.

EXPOSURE ANALYSIS

Severity Count

High 1

Medium 8

Low 3

Informational 5

Undetermined 2

CATEGORY BREAKDOWN

Category Count

Access Controls 3

Auditing and Logging 2

Data Validation 13

Undefined Behavior 1

Trail of Bits 5 Offchain Labs Security Assessment
PUBLIC

Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

● Insufficient access control implementations (TOB-ARBGOV-3,
TOB-ARBGOV-6, TOB-ARBGOV-9)
The lack of access controls across the system poses a variety of risks for the
contracts.

● Missing data validation and unclear assumptions (TOB-ARBGOV-1,
TOB-ARBGOV-5, TOB-ARBGOV-12, TOB-ARBGOV-13)
Assumptions made for each section of the system lack a clear specification, which
makes it difficult to track where validation is occurring or missing.

Trail of Bits 6 Offchain Labs Security Assessment
PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Mary O'Brien, Project Manager
dan@trailofbits.com mary.obrien@trailofbits.com

The following engineers were associated with this project:

Gustavo Grieco, Consultant Jaime Iglesias, Consultant
gustavo.grieco@trailofbits.com jaime.iglesiasbotas@trailofbits.com

Nat Chin, Consultant Troy Sargent, Consultant
natalie.chin@trailofbits.com troy.sargent@trailofbits.com

Tarun Bansal, Consultant
tarun.bansal@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

October 21, 2022 Status update meeting #1

October 28, 2022 Status update meeting #2

November 4, 2022 Status update meeting #3

November 10, 2022 Status update meeting #4

November 18, 2022 Status update meeting #5

December 2, 2022 Status update meeting #6

December 12, 2022 Delivery of report draft

December 12, 2022 Report readout meeting

January 6, 2023 Delivery of final report

Trail of Bits 7 Offchain Labs Security Assessment
PUBLIC

mailto:dan@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of the Arbitrum Governance
and Token Bridge contracts. Specifically, we sought to answer the following non-exhaustive
list of questions:

● Regarding the Arbitrum Governance:

○ Can any user other than a member of the security council block or cancel a
proposal or an upgrade?

○ Is the usage of retryable tickets safe for proposals or upgrades?

○ Is voting-related information (e.g., votes, quorum) tracked properly?

○ Are the treasury tokens excluded from the quorum computation?

○ Are the vested funds properly protected?

● Regarding the Token Bridge:

○ Is it possible to steal funds?

○ Are there gaps between expected behavior in the protocol and its
implementation?

○ Do the bridge contracts adequately protect against a variety of tokens?

○ Does the minting- and burning-related arithmetic hold?

○ Are all the assumptions upon which each contract relies explicitly outlined?

○ Does the bridge adequately track token mappings between L1 and L2?

Trail of Bits 8 Offchain Labs Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the targets listed below:

Arbitrum Governance

Repository https://github.com/OffchainLabs/governance/

Version e4562df1fd165042f6fc5400063dd4a23d10e855
6bd1a880df96b36508b55a10c8f29327711f3750
cf6762d45678847cd901544f90989d852dfdd6ea

Type Solidity

Platform Ethereum

Arbitrum Token Bridge

Repository https://github.com/OffchainLabs/token-bridge-contracts/

Version b30dfcda019a5756061638677dae9b28384c7275

Type Solidity

Platform Ethereum

Trail of Bits 9 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/governance/
https://github.com/OffchainLabs/token-bridge-contracts/

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches and their results include the following:

Governance contracts:

● L1ArbitrumToken: This contract is the L1 representation of the Arbitrum tokens
ERC20 contracts. We manually verified how this token is registered in the token
bridge infrastructure and whether it behaves as expected as a “reverse token.”

● TokenDistributor: This contract holds the Arbitrum ERC20 tokens and the registry
for users to claim during an airdrop. We manually verified that users can claim only
when they have a positive amount available and before a certain deadline. We also
checked how the remaining tokens are collected after the deadline passes.

● FixedDelegateErc20Wallet: This contract serves as the treasury for Arbitrum
tokens, which can be spent using a proposal. We verified that the access controls
are in place in order to delegate or transfer funds.

● L1ArbitrumTimelock and its factory: Timelock is deployed on L1 for executing
proposals and forwarding them to L2. We manually reviewed this contract to ensure
that only the expected users are allowed to execute proposals. We also checked that
the proposal execution is performed correctly, in particular when retryable tickets
are used. Additionally, we verified that the contract that sets up the timelock defines
minimal permissions for users as well as other contracts.

● L2ArbitrumGovernor and its factory: This standard governor contract has some
special functionality to avoid counting votes of some excluded tokens. This contract
also allows an owner to set parameters by calling the relay function. We also
verified that the contract that sets up the governance defines minimal permissions
for users as well as other contracts.

● ArbitrumVestingWallet and its factory: This wallet vests over time tokens that
have been created with a specific factory contract. The full token allowance can be
used for delegating and voting immediately. We manually verified how tokens are
released over time, as well as their availability for delegation and voting.

● UpgradeExecutor: This contract performs arbitrary actions that facilitate
upgradeability. It does not contain upgrade logic itself, only the means to call
upgrade contracts and execute them.

Trail of Bits 10 Offchain Labs Security Assessment
PUBLIC

● Auxiliary code and dependencies, such as the L1ArbitrumMessenger and the Util

contracts, were included in the scope.

Token Bridge contracts:

These contracts allow users to trustlessly move funds (e.g., ERC20 tokens) between
Ethereum and Arbitrum. We reviewed the contracts with a focus on the reverse bridge
contract, which is the new code introduced by Offchain Labs to allow L1 tokens with a total
supply tracked in L2. We looked for flaws in the access controls that could allow attackers
to execute unauthorized actions, such as unauthorized calls to functions on the L1/L2
Gateways.

We checked that inbound and outbound messages are properly crafted and processed. We
reviewed the process of depositing tokens into an L1 contract and minting the same
number of tokens on L2 (as well as the process of burning tokens on L2 and enabling a
withdrawal on L1). Additionally, we reviewed the three gateway types and looked for ways
that a malicious token could abuse the default gateways. We considered interactions
initiated from within the router contract and from outside of it.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● Integral review of the token bridge contracts, in particular of interactions with
less-common ERC token standards such as ERC777

● Nitro smart contracts (Inbox, Bridge, etc.)

Trail of Bits 11 Offchain Labs Security Assessment
PUBLIC

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic Arithmetic operations are very limited across the
reviewed contracts; however, we have identified a couple
of instances in which the assumptions made around the
arithmetic operations do not hold (TOB-ARBGOV-13,
TOB-ARBGOV-19).

Moderate

Auditing Although most functions emitted events, we found an
instance where events were missing (TOB-ARBGOV-2).
Additionally, neither an incident response plan nor
monitoring was provided during the review.

Moderate

Authentication /
Access Controls

The extensive composability makes it difficult to track
how components interoperate. The lack of
documentation on different actors and the number of
privileged operations increases the likelihood of issues
such as TOB-ARBGOV-3, TOB-ARBGOV-6, and
TOB-ARBGOV-9.

Moderate

Complexity
Management

Because interactions involve on-chain and off-chain
components, it is difficult to understand certain
operations that involve multiple codebases and
component interactions. As a result, the reviewer must
have a holistic understanding of the system in order to
review its parts in isolation. Moreover, the codebase
lacked documentation that highlighted assumptions
being made across different components, which required
us to spend a substantial amount of time understanding
intricate details of how the components worked together.

Moderate

Trail of Bits 12 Offchain Labs Security Assessment
PUBLIC

This underscores the need for additional documentation
in the codebase.

Decentralization With the introduction of governance, the Offchain Labs
team began to decentralize important system-related
decisions, such as upgrades. However, in practice,
Offchain Labs will need to re-evaluate the level of
decentralization according to the composition of the 9/12
council, the distribution of the voting token, and the
ownership configuration of several critical infrastructure
components (e.g., the token bridge gateways).

Moderate

Documentation Although the Arbitrum documentation provides a
sufficient high-level overview of the system, it lacks an
in-depth detail of the implementation, with several
system invariants still undocumented. Additionally, the
codebase lacks documentation on the location of data
validation. We recommend updating the Arbitrum
documentation, especially regarding assumptions.

Finally, the Arbitrum team should create a specification
for tokens that intend to use Arbitrum’s bridge, similar to
the specification used for the standardization of
gateways. This will help define and document
assumptions regarding the bridge operation and what to
expect from tokens that want to integrate with the
bridge.

Moderate

Front-Running
Resistance

Although we found no front-running issues on the
current contracts, it will not be clear whether cross-chain
interactions are vulnerable to front-running until a
specific audit focuses on evaluating this aspect.

Further
Investigation
Required

Low-Level
Manipulation

The contracts under review contain only minor usage of
low-level data manipulation. However, the lack of
contract existence (TOB-ARBGOV-15, TOB-ARBGOV-18)
impacts the codebase and should be carefully evaluated.

Moderate

Trail of Bits 13 Offchain Labs Security Assessment
PUBLIC

https://ethereum-magicians.org/t/outlining-a-standard-interface-for-cross-domain-erc20-transfers/6151
https://ethereum-magicians.org/t/outlining-a-standard-interface-for-cross-domain-erc20-transfers/6151

Testing and
Verification

The codebase contains a number of unit and integration
tests. However, the tests are insufficient to catch most
important issues, which indicates that there are a
number of blind spots that should be covered. We noted
that bridge contracts can benefit from additional edge
case tests for gateway and router contracts. We
recognize that doing effective cross-chain testing is
difficult and that the available tooling is not sufficiently
mature.

Moderate

Trail of Bits 14 Offchain Labs Security Assessment
PUBLIC

Summary of Recommendations

The Arbitrum Governance and TokenBridge contracts are works in progress with multiple
planned iterations. Trail of Bits recommends that Arbitrum address the findings detailed in
this report and take the following additional steps prior to deployment:

● Design a flowchart outlining function calls throughout the system and who is
expected to call them. This flowchart should identify the functions that are
protected by access controls and the internals that each function executes.

● Create a standardized specification for tokens that intend to use Arbitrum’s
bridge. This helps define assumptions that the bridge makes about its tokens, and
helps users judge tokens accordingly.

● Integrate reliable unit tests in the system and the continuous integration
pipeline.

○ The unit tests should test all “happy paths” and expected revert flows in the
contracts before they can be deployed.

○ Ensure that all tests have reasonable bounds in the system to ensure that
they cover corner cases.

● Identify and analyze all system properties that are expected to hold. This effort
should include analyzing the properties of critical arithmetic operations, identifying
potential edge cases, and checking that rounding occurs in the correct direction. The
number of issues related to rounding that we found during this audit suggest that
more rounding issues may be present in the codebase.

● Document assumptions that are made between L1 and L2. Explicit data
validation across platforms and languages is especially important for a codebase of
this level of complexity.

Trail of Bits 15 Offchain Labs Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Missing zero address checks Data Validation Informational

2 Missing event for state variable update Auditing and
Logging

Informational

3 Anyone can reduce the vote power of vested
tokens

Access Control Medium

4 Users can reduce quorum delegating their votes
to the DAO treasury

Undefined
Behavior

Low

5 Assumptions about OpenZeppelin contracts
integration should be reviewed

Data Validation Medium

6 Anyone can initialize an ArbitrumTimelock
implementation contract

Access Control Informational

7 TokenDistributor does not allow to change
recipients once configured

Data Validation Medium

8 Governance proposal that rely on retryable tickets
could be disabled

Auditing and
Logging

Low

9 Admin role of L2GovernanceFactory on
UpgradeExecutor is not revoked

Access Control Informational

10 Missing contract size check Data Validation Undetermined

11 L2ArbitrumGateway trusts L2Token to return
correct l1Address

Data Validation High

Trail of Bits 16 Offchain Labs Security Assessment
PUBLIC

12 Retryable tickets allow out of order execution of
token bridge registration functions

Data Validation Medium

13 Assumption of all tokens being burned in
outboundEscrowTransfer

Data Validation Medium

14 Dead code in outboundTransferCustomRefund Data Validation Informational

15 Lack of contract existence checks in the gateway
may not detect failed execution

Data Validation Undetermined

16 Cross-chain message out-of-order execution
impacts sequential proposal execution

Data Validation Medium

17 Retryable tickets used in governance proposals
can be silently discarded

Data Validation Medium

18 Lack of contract existence checks is error-prone
when scheduling transactions through the
timelock

Data Validation Medium

19 Potential overflow in TokenDistributor causes
imprecise claims

Data Validation Low

Trail of Bits 17 Offchain Labs Security Assessment
PUBLIC

Detailed Findings

1. Missing zero address checks

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-ARBGOV-1

Target: governance/src/TokenDistributor.sol

Description
Certain setter functions fail to validate incoming arguments, so callers can accidentally set
important state variables to the zero address.

Below we outline two instances we have identified in which incoming arguments are not
validated:

● The setter function, setSweepReceiver, does not validate that the argument,
_sweepReceiver, is not the zero address prior to updating the state variable,
sweepReceiver.

function setSweepReciever(address payable _sweepReciever) external onlyOwner {
sweepReceiver = _sweepReciever;

}

Figure 1.1: The setter setSweepReceiver

function sweep() external {
[...]
require(token.transfer(sweepReceiver, leftovers), "TokenDistributor: fail token

transfer");
[...]

}

Figure 1.2: The sweep function

However, using a null address will cause the sweep to revert as the token’s _transfer
function requires that the argument, to, be non-zero.

require(to != address(0), "ERC20: transfer to the zero address");

Figure 1.3: The _transfer function validation of receiver address

Trail of Bits 18 Offchain Labs Security Assessment
PUBLIC

https://github.com/trailofbits/audit-offchain-governance/blob/e4562df1fd165042f6fc5400063dd4a23d10e855/src/TokenDistributor.sol#L64-L65
https://github.com/trailofbits/audit-offchain-governance/blob/e4562df1fd165042f6fc5400063dd4a23d10e855/src/TokenDistributor.sol#L124-L135
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/token/ERC20/ERC20Upgradeable.sol#L237

● The L2GovernanceFactory contract constructor does not validate the incoming
arguments, which can result in the deployment of an unusable contract.

constructor(
address _coreTimelockLogic,
address _coreGovernorLogic,
address _treasuryTimelockLogic,
address _treasuryLogic,
address _treasuryGovernorLogic,
address _l2TokenLogic,
address _upgradeExecutorLogic

) {
coreTimelockLogic = _coreTimelockLogic;
coreGovernorLogic = _coreGovernorLogic;
treasuryTimelockLogic = _treasuryTimelockLogic;
treasuryLogic = _treasuryLogic;
treasuryGovernorLogic = _treasuryGovernorLogic;
l2TokenLogic = _l2TokenLogic;
upgradeExecutorLogic = _upgradeExecutorLogic;
proxyAdminLogic = address(new ProxyAdmin());
step = Step.One;

}

Figure 1.4: The constructor in the L2GovernaceFactory contract

Exploit Scenario
Alice creates a new token distributor contract. She sets the zero address as the sweeper,
assuming that it will force the destruction of the remaining tokens, but it only blocks the
call to the sweep function, disallowing the self-destruction of the contract.

Recommendations
Short term, add the proper validation to incoming arguments.

Long term, ensure input validations across functions are consistent and correct.

Trail of Bits 19 Offchain Labs Security Assessment
PUBLIC

2. Missing event for state variable update

Severity: Informational Difficulty: High

Type: Auditing and Logging Finding ID: TOB-ARBGOV-2

Target: governance/src/TokenDistributor.sol

Description
The constructor does not emit the event SweepReceiverSet when setting the state
variable sweepReceiver, but it does in the setSweepReceiver function.

constructor(
IERC20VotesUpgradeable _token,
address payable _sweepReceiver,
address _owner,
uint256 _claimPeriodStart,
uint256 _claimPeriodEnd

) Ownable() {
[...]
sweepReceiver = _sweepReceiver;
[...]

}

Figure 2.1: TokenDistributor’s constructor

This inconsistency would make it more difficult for event indexers to track the value of
sweepReceiver upon deployment.

Recommendations
Short term, emit the SweepReceiverSet event in the constructor.

Long term, review important actions and updates and ensure they are logged appropriately
for off-chain monitoring systems.

Trail of Bits 20 Offchain Labs Security Assessment
PUBLIC

https://github.com/trailofbits/audit-offchain-governance/blob/e4562df1fd165042f6fc5400063dd4a23d10e855/src/TokenDistributor.sol#L43-L61

3. Anyone can reduce the vote power of vested tokens

Severity: Medium Difficulty: Low

Type: Access Control Finding ID: TOB-ARBGOV-3

Target: governance/src/ArbitrumVestingWallet.sol

Description
The contract that vests tokens can be used to vote, but the release function is unprotected.
As a result, any user can force a transfer that will reduce the vote power.

Arbitrum governance tokens can be vested in special contracts that will lock them for a
certain amount of time. These contracts are based on OZ’s VestedWallet but still allow the
owner to vote using vested tokens:

59 function delegate(address token, address delegatee) public onlyBeneficiary {
60 IERC20VotesUpgradeable(token).delegate(delegatee);
61 }
62
63 /// @notice Claim tokens from a distributor contract
64 function claim(address distributor) public onlyBeneficiary {
65 TokenDistributor(distributor).claim();
66 }
67
68 /// @notice Cast vote in a governance proposal
69 function castVote(address governor, uint256 proposalId, uint8 support) public
onlyBeneficiary {
70 IGovernorUpgradeable(governor).castVote(proposalId, support);
71 }

Figure 3.1: Voting-related functions in ArbitrumVestingWallet

However, since the rest of the code still follow VestedWallet code, the release functions
are unmodified:

function release() public virtual {
uint256 releasable = vestedAmount(uint64(block.timestamp)) - released();
_released += releasable;
emit EtherReleased(releasable);
Address.sendValue(payable(beneficiary()), releasable);

}

function release(address token) public virtual {

Trail of Bits 21 Offchain Labs Security Assessment
PUBLIC

https://docs.openzeppelin.com/contracts/4.x/api/finance#VestingWallet

uint256 releasable = vestedAmount(token, uint64(block.timestamp)) -
released(token);

_erc20Released[token] += releasable;
emit ERC20Released(token, releasable);
SafeERC20.safeTransfer(IERC20(token), beneficiary(), releasable);

}

Figure 3.2: Release functions from OZ’s VestingWallet

Since these functions are not protected, they can be triggered by any user.

Exploit Scenario
Alice vests a number of tokens linearly over a six-month period and uses these tokens to
vote in some proposals. Two months into the vesting period, Eve notices that a portion of
Alice's tokens can be released and calls the release function, triggering a transfer to the
beneficiary. Alice continues voting without realizing that her voting power is lower than
expected.

Recommendations
Short term, protect release functions to only allow the beneficiary to call them.

Long term, review all the third-party code that is inherited and overridden to ensure it
correctly implements the expected system properties.

Trail of Bits 22 Offchain Labs Security Assessment
PUBLIC

4. Users can reduce quorum delegating their votes to the DAO treasury

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-ARBGOV-4

Target: governance/src/L2ArbitrumGovernor.sol

Description
The governance contract avoids counting the voting power of the DAO treasury in the
quorum, but this also allows users to reduce the quorum without risk for them.

Arbitrum governance tokens can be used to vote on different proposals. When the voting
contract computes the quorum, it excludes the voting power of the DAO treasury, which
will hold tokens for future distribution:

/// @notice Get "circulating" votes supply; i.e., total minus excluded vote exclude
address.
function getPastCirculatingSupply(uint256 blockNumber) public view virtual returns
(uint256) {

return token.getPastTotalSupply(blockNumber)
- token.getPastVotes(EXCLUDE_ADDRESS, blockNumber);

}

/// @notice Calculates the quorum size, excludes token delegated to the exclude
address
function quorum(uint256 blockNumber)

public
view
override (IGovernorUpgradeable, GovernorVotesQuorumFractionUpgradeable)
returns (uint256)

{
return (getPastCirculatingSupply(blockNumber) * quorumNumerator(blockNumber))

/ quorumDenominator();
}

Figure 4.1: Quorum computation in L2ArbitrumGovernor

The governance contract uses quorum to establish a minimum number of votes for a
proposal to pass; the number of votes in favor must exceed the votes against it.

function _quorumReached(uint256 proposalId) internal view virtual override returns
(bool) {

ProposalDetails storage details = _proposalDetails[proposalId];

Trail of Bits 23 Offchain Labs Security Assessment
PUBLIC

return quorum(proposalSnapshot(proposalId)) <= details.forVotes;
}

Figure 4.2: Quorum usage in GovernorCompatibilityBravoUpgradeable

However, users can still delegate their tokens to the DAO treasure address, which increases
its voting power and therefore lowers the quorum:

function _delegate(address delegator, address delegatee) internal virtual {
address currentDelegate = delegates(delegator);
uint256 delegatorBalance = balanceOf(delegator);
_delegates[delegator] = delegatee;

emit DelegateChanged(delegator, currentDelegate, delegatee);

_moveVotingPower(currentDelegate, delegatee, delegatorBalance);
}

Figure 4.3: Delegate implementation from OZ’s ERC20VotesUpgradeable

Exploit Scenario
Eve poses a large amount of votes. She silently delegates to the DAO treasury excluded
address to reduce the quorum needed. Alice wants to create a proposal, so she checks the
current quorum amount on-chain and negotiates with a number of delegates to ensure her
proposal will have quorum.

When the vote period is about to start, Eve delegates her votes to another address,
indirectly increasing the quorum. Alice did not expect that change, and she is unable to
reach the quorum with the votes she negotiated.

Recommendations
Short term, document this behavior to ensure users are aware of this issue and actively
monitor the blockchain to identify suspicious delegations.

Long term, carefully review the high-level impact of the code changes in any third-party
code that is re-used.

Trail of Bits 24 Offchain Labs Security Assessment
PUBLIC

5. Assumptions about OpenZeppelin contracts integration should be reviewed

Severity: Medium Difficulty: Medium

Type: Data Validation Finding ID: TOB-ARBGOV-5

Target:
● governance/src/ArbitrumTimelock.sol,
● governance/src/L1ArbitrumTimelock.sol
● governance/src/L2ArbitrumGovernor.sol

Description
Arbitrum uses OpenZeppelin’s governance modules to implement its governance system.
These modules make a series of assumptions about how they should be integrated in
larger systems.

Arbitrum relies on OpenZeppelin’s contract modules to implement their governance
system:

contract L2ArbitrumGovernor is
Initializable,
GovernorSettingsUpgradeable,
GovernorCompatibilityBravoUpgradeable,
GovernorVotesUpgradeable,
GovernorTimelockControlUpgradeable,
GovernorVotesQuorumFractionUpgradeable,
GovernorPreventLateQuorumUpgradeable,
OwnableUpgradeable

{ … }

Figure 5.1: Use of OZ’s Governor code to implement L2ArbitrumGovernor (old version)

// @title L1 timelock for executing proposals on L1 or forwarding them back to L2
/// @dev Only accepts proposals from a counterparty L2 timelock
contract L1ArbitrumTimelock is TimelockControllerUpgradeable, L1ArbitrumMessenger
{ … }

Figure 5.2: Use of OZ’s Timelock code to implement L2ArbitrumGovernor

The use of these contract modules includes a series of assumptions that are sometimes
unclear or require familiarity with Compound-style governance, e.g.:

● The use of GovernanceBravo silently limits the weight of the votes to 2**96 - 1.
While the OpenZeppelin documentation mentions this limitation for having

Trail of Bits 25 Offchain Labs Security Assessment
PUBLIC

https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#ERC20Votes

COMP-compatible code when creating a token, it fails to mention that limitation in
the GovernanceBravo documentation.

/**
* @dev See {Governor-_countVote}. In this module, the support follows Governor
Bravo.
*/
function _countVote(

uint256 proposalId,
address account,
uint8 support,
uint256 weight,
bytes memory // params

) internal virtual override {
ProposalDetails storage details = _proposalDetails[proposalId];
Receipt storage receipt = details.receipts[account];

require(!receipt.hasVoted, "GovernorCompatibilityBravo: vote already cast");
receipt.hasVoted = true;
receipt.support = support;
receipt.votes = SafeCastUpgradeable.toUint96(weight);
…

Figure 5.3: Implementation of _countVote from
GovernorCompatibilityBravoUpgradeable

When using a simple vote-counting approach, users should be aware that this will change
the way in which quorum is reached with respect to GovernanceBravo, which will include
both positive and abstained votes:

contract L2ArbitrumGovernor is
Initializable,
GovernorSettingsUpgradeable,
GovernorCountingSimpleUpgradeable,
GovernorVotesUpgradeable,
GovernorTimelockControlUpgradeable,
GovernorVotesQuorumFractionUpgradeable,
GovernorPreventLateQuorumUpgradeable,
OwnableUpgradeable

{ … }

Figure 5.4: Use of OZ’s Governor code to implement L2ArbitrumGovernor (new version)

Trail of Bits 26 Offchain Labs Security Assessment
PUBLIC

function _quorumReached(uint256 proposalId) internal view virtual override
returns (bool) {

ProposalVote storage proposalvote = _proposalVotes[proposalId];
return quorum(proposalSnapshot(proposalId)) <= proposalvote.forVotes +

proposalvote.abstainVotes;
}

Figure 5.5: _quorumReached function from GovernorCountingSimpleUpgradeable

Finally, in other instances the documentation does cover the assumptions and/or
limitations; however, these should be thoroughly reviewed and documented:

● The chainId and the governor address are not part of the proposal ID
computation. Consequently, the same proposal (with same operation and same
description) will have the same ID if submitted on multiple governors across
multiple networks. This also means that in order to execute the same operation
twice (on the same governor), the proposer will have to change the description in
order to avoid proposal ID conflicts.

● It is not recommended to change the timelock while there are other queued
governance proposals, because this can bring unexpected consequences to the
other proposals.

● Setting up the TimelockController to have additional proposers besides the
governor is very risky.

● The use of TimeLockController should be carefully considered, as there are
instances in which it is being used with a delay of 0. This essentially makes
TimeLockController redundant while adding additional attacker surface,
operational overhead, and gas cost.

Exploit Scenario
The GovernanceBravo compatibility module is used with a non-compound voting token
that implicitly limits the supply of the token to 2 ** 96 - 1. However, the Arbitrum team is
unaware of this sets the supply to a higher value, effectively limiting users’ voting
capabilities.

Recommendations
Short term, carefully review and document the assumptions and limitations regarding
third-party code integrations and consider whether the limitations are acceptable and
whether the assumptions hold.

Long term, monitor the third-party code libraries for any relevant changes and security
advisories.

Trail of Bits 27 Offchain Labs Security Assessment
PUBLIC

https://docs.openzeppelin.com/contracts/4.x/api/governance#Governor-hashProposal-address---uint256---bytes---bytes32-
https://docs.openzeppelin.com/contracts/4.x/api/governance#Governor-hashProposal-address---uint256---bytes---bytes32-
https://docs.openzeppelin.com/contracts/4.x/api/governance#GovernorTimelockControl-updateTimelock-contract-TimelockController-
https://docs.openzeppelin.com/contracts/4.x/api/governance#GovernorTimelockControl-updateTimelock-contract-TimelockController-
https://docs.openzeppelin.com/contracts/4.x/api/governance#GovernorTimelockControl
https://docs.openzeppelin.com/contracts/4.x/api/governance#GovernorTimelockControl

6. Anyone can initialize an ArbitrumTimelock implementation contract

Severity: Informational Difficulty: Low

Type: Access Control Finding ID: TOB-ARBGOV-6

Target: governance/src/ArbitrumTimelock.sol

Description
Once the ArbitrumTimelock contract implementation is deployed, any user can initialize
it. Since the Offchain Labs team initiated this implementation, a malicious user could
leverage this issue to conduct phishing attacks.

The ArbitrumTimelock contract is an upgradable smart contract with an initializer. It is
considered a security best practice to either disable initializers or to initialize the
implementation contract at the time of deployment. We have observed that other
upgradable contracts include a constructor that disables the initialization.

constructor() {
_disableInitializers();

}

Figure 6.1: Constructor in L2ArbitrumGovernor

However, this is not the case with the ArbitrumTimeLock contract; it has an empty
constructor, which allows an attacker to initialize and take control of an uninitialized
instance.

Exploit Scenario
Eve notices that the implementation instance of ArbitrumTimelock is not initialized and
calls the initialize function on it with desired arguments. Eve can then market it as an
official ArbitrumTimelock contract to convince others to send funds to it, especially since
it can be proved that the contract is deployed by the Offchain Labs team. All funds sent to
this contract will be under Eve’s full control and can be stolen at any time.

Recommendations
Short term, disable initializers for the ArbitrumTimelock contract during construction.

Long term, carefully review the codebase to make sure that same pattern is followed for
upgradable smart contracts.

Trail of Bits 28 Offchain Labs Security Assessment
PUBLIC

7. TokenDistributor does not allow to change recipients once configured

Severity: Medium Difficulty: Medium

Type: Data Validation Finding ID: TOB-ARBGOV-7

Target: governance/src/TokenDistributor.sol

Description
If the owner makes an error while setting the recipients of the tokens, there is no way to
correct it. The error will result in loss of funds if the owner sets the value of claimable
tokens for a recipient to a greater value than what was intended.

The TokenDistributor contract allows the owner to use the setRecipients function to
set a list of recipients to receive tokens.

// sanity check that the address being set is consistent
// if for some reason the owner made an error they can still set the address to

zero in order to correct it
require(claimableTokens[_recipients[i]] == 0, "TokenDistributor: recipient

already set");
claimableTokens[_recipients[i]] = _claimableAmount[i];
emit CanClaim(_recipients[i], _claimableAmount[i]);
unchecked {

sum += _claimableAmount[i];
}

Figure 7.1: Part of setRecipient in TokenDistributor

According to the comment, it is assumed that the owner can correct an error by setting the
value of claimableTokens for a recipient to 0, but it is not possible to set the value of
claimableTokens[recipient] to 0 once it has been set to a non-zero value. The
require statement will revert if the owner tries to set the value of claimableTokens for a
recipient that has already been set to a non-zero value.

Note that the value of sum is always incremented by the _claimableAmount[i] while
making changes to this function. Therefore, if the code is modified to change the value of
claimableTokens for a recipient, the value of sum should be updated accordingly.
Otherwise, the contract will be left with a wrong value of totalClaimable.

Exploit Scenario
Alice, the owner, sets the recipients but makes a mistake; Alice tries to correct it, but the
function reverts. As a result, a recipient can claim more tokens than they should.

Trail of Bits 29 Offchain Labs Security Assessment
PUBLIC

Recommendations
Short term, allow the owner to change the configuration to correct mistakes.

Long term, thoroughly review the assumptions made during development; in this case, a
comment indicates an assumption that does not hold.

Trail of Bits 30 Offchain Labs Security Assessment
PUBLIC

8. Governance proposal that rely on retryable tickets could be disabled

Severity: Low Difficulty: High

Type: Auditing and Logging Finding ID: TOB-ARBGOV-8

Target: governance/src/L1ArbitrumTimelock.sol

Description
Certain governance proposals can be temporarily blocked by the owner of the bridge,
disabling the use of retryable tickets.

Part of the governance system lives in the Ethereum mainnet, and can involve the use of
retryable tickets:

/// @dev If the target is reserved "magic" retryable ticket address
address(bytes20(bytes("retryable ticket magic")))
/// we create a retryable ticket at provided inbox; otherwise, we execute directly
function _execute(address target, uint256 value, bytes calldata data)

internal
virtual
override

{
if (target == RETRYABLE_TICKET_MAGIC) {

// if the target is reserved retryable ticket address,
// we retrieve the inbox from the data object and
// then we create a retryable ticket,
(

…

Figure 8.1: Code to execute proposal that require retryable tickets in L1ArbitrumTimelock

However, the owner of the bridge mainnet can still stop the execution of a proposal that
disallows the creation of new retryable tickets:

function createRetryableTicketNoRefundAliasRewrite(
address destAddr,
uint256 l2CallValue,
uint256 maxSubmissionCost,
address excessFeeRefundAddress,
address callValueRefundAddress,
uint256 maxGas,
uint256 gasPriceBid,
bytes calldata data

) public payable virtual onlyWhitelisted returns (uint256) {

Trail of Bits 31 Offchain Labs Security Assessment
PUBLIC

require(!isCreateRetryablePaused, "CREATE_RETRYABLES_PAUSED");
…

Figure 8.2: Header of createRetryableTicketNoRefundAliasRewrite in the Arbitrum
Inbox

In the example above, the timelock will not be able to execute the proposal despite the
governance decision.

Exploit Scenario
The governance decides to execute a proposal that involves creating a retryable ticket. The
owner of the bridge does not want to execute it, so they temporarily disable ticket creation.

Recommendations
Short term, properly document this limitation to ensure delegates are aware of this issue.

Long term, review how privileged actors can interfere with each other during governance
proposals.

Trail of Bits 32 Offchain Labs Security Assessment
PUBLIC

9. Admin role of L2GovernanceFactory on UpgradeExecutor is not revoked

Severity: Informational Difficulty: High

Type: Access Control Finding ID: TOB-ARBGOV-9

Target: governance/src/L2GovernanceFactory.sol

Description
The L2GovernanceFactory contract is left with an admin role on UpgradeExecutor. This
role can be used to introduce backdoors into the governance system.

The Arbitrum governance is created and configured by a factory contract across several
steps. In the first step, the factory contract is granted an admin role on UpgradeExecutor
when it is initialized:

// we make this contract the admin of the upgrade executor for now, then
// switch that over in step 3
dc.executor.initialize(address(this), new address[](0));

Figure 9.1: Part of deployStep1 function in L2GovernanceFactory

Although this role is necessary in the following step, it should be revoked in step 3 (as
suggested in the above code comment):

function deployStep3(address[] memory _l2UpgradeExecutors) public onlyOwner {
require(step == Step.Three, "L2GovernanceFactory: not step three");
// now that we all the address we can grant roles to them on the upgrade

executor
UpgradeExecutor exec = UpgradeExecutor(upExecutor);
for (uint256 i = 0; i < _l2UpgradeExecutors.length; ++i) {

exec.grantRole(exec.EXECUTOR_ROLE(), _l2UpgradeExecutors[i]);
}
exec.grantRole(exec.ADMIN_ROLE(), upExecutor);

step = Step.Complete;
}

Figure 9.2: deployStep3 function in L2GovernanceFactory

However, as shown in figure 9.2 above, there is no statement to revoke the admin role of
the factory contract on the UpgradeExecutor contract.

Trail of Bits 33 Offchain Labs Security Assessment
PUBLIC

Recommendations
Short term, add the following statement to the deployStep3 function of the
L2GovernanceFactory contract:

exec.revokeRole(exec.ADMIN_ROLE(), address(this));

Figure 9.3 Statement to be added to deployStep3 in L2GovernanceFactory

Long term, carefully document the roles that each contract should have and review the
codebase to make sure that these roles are being granted and/or revoked per the
expectations.

Trail of Bits 34 Offchain Labs Security Assessment
PUBLIC

10. Missing contract size check

Severity: Undetermined Difficulty: High

Type: Data Validation Finding ID: TOB-ARBGOV-10

Target: governance/src/UpgradeExecutor.sol

Description
The UpgradeExecutor contract uses delegatecall to conduct upgrades. If the upgrade
parameter is set to an address that does not contain code to execute, a delegatecall to
the parameter will still return success. Since this contract is designed to allow the executor
to execute arbitrary logic, the function should not allow calling an address that does not
have any effect.

function execute(address upgrade, bytes memory upgradeCallData)
public
payable
onlyRole(EXECUTOR_ROLE)
nonReentrant

{
(bool success,) = address(upgrade).delegatecall(upgradeCallData);
require(success, "UpgradeExecutor: inner delegate call failed");

}

Figure 10.1: The execute function in UpgradeExecutor

The Solidity documentation includes the following warning:

The low-level functions call, delegatecall and staticcall return true as their first
return value if the account called is non-existent, as part of the design of the
EVM. Account existence must be checked prior to calling if needed.

Figure 10.2: A snippet of the Solidity documentation detailing unexpected behavior related to
delegatecall

Recommendations
Short term, implement a contract existence check before a delegatecall.

Long term, carefully review the Solidity documentation, especially the “Warnings” section,
and document failure cases for the upgrade functionality of the UpgradeExecutor
contract.

Trail of Bits 35 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/governance/blob/6bd1a880df96b36508b55a10c8f29327711f3750/src/UpgradeExecutor.sol#L41-L49
http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions

11. L2ArbitrumGateway trusts L2Token to return correct l1Address

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-ARBGOV-11

Target: tokenbridge/arbitrum/gateway/L2ArbitrumGateway.sol

Description
If a malicious user controls the return value of the L1 token address provided by the L2
contract code, they can drain the tokens using the Arbitrum token bridge.

Bridge contracts do not store mappings of L2 tokens to L1 tokens, and
L2ArbitrumGateway depends on the L2 token contract to return the correct value of the
L1 token to be bridged. Additionally, t custom gateway contracts store a mapping of the L1
token to the L2 token in mapping(address => address), which allows two different L1
tokens to be mapped to the same L2 token. These two issues combined can be used to
steal funds from the bridge.

The outboundTransfer function in L2ArbitrumGateway accepts an L1 token address as
an argument, then loads the corresponding L2 token address from the l1ToL2Token
mapping. The function proceeds to call the l1Address function on the L2 token contract to
get the address of the associated L1 token, comparing the returned value with the provided
L1 token address to check if they match.

However, if an attacker can control the value of l1Address returned by L2 token, they can
use this limited control over L2 token with a malicious L1 token contract to steal funds
from the bridge.

address l2Token = calculateL2TokenAddress(_l1Token);
require(l2Token.isContract(), "TOKEN_NOT_DEPLOYED");
require(IArbToken(l2Token).l1Address() == _l1Token, "NOT_EXPECTED_L1_TOKEN");

Figure 11.1: Part of the OutboundTransfer function in L2ArbitrumGateway

The client is aware of a similar issue where the attack can be executed only by the owner of
the gateway contract; in this case, the attack can be executed by anyone with limited
control over the L2 token contract.

Exploit Scenario
A legitimate token that allows its L2 counterpart to update its associated L1 token address
is deployed and registered in the Arbitrum bridge.

Trail of Bits 36 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/governance/blob/6bd1a880df96b36508b55a10c8f29327711f3750/src/UpgradeExecutor.sol#L41-L49

Eve, a malicious user, changes the L2 contract’s associated L1 token address. She proceeds
to deploy another L1 token contract that she controls and mint new tokens. She then
registers the token contract in the Arbitrum bridge and associates it with the legitimate L2
token.

Eve changes the L2 contract’s associated L1 address to return the newly deployed token
contract triggers a deposit. The deposit is executed, and Eve proceeds to change the
address associated with the L2 token back to the original, allowing her to convert the fake
tokens into the legitimate ones.

Recommendations
Short term, consider:

● Document assumptions that are made when interacting with untrusted contracts
and whether the bridge should include additional safeguards. If it should not,
consider documenting these trust assumptions so that users interacting with the
bridge are aware of them.

● Implement additional checks in registerL2Token to avoid registering two L1
tokens with one L2 token.

● Consider including a L2 token to L1 token mapping.

Long term, carefully review interactions with third-party code and their trust assumptions.
Minimize trust in third-party contracts by implementing stricter validation.

Trail of Bits 37 Offchain Labs Security Assessment
PUBLIC

12. Retryable tickets allow out-of-order execution of token bridge registration
functions

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-ARBGOV-12

Target: governance/src/L2GovernanceFactory.sol

Description
Arbitrum’s retryable tickets can be exploited to break assumptions about how tokens are
registered and configured in the bridge.

The Arbitrum token bridge uses retryable tickets to propagate the information regarding a
new token from Ethereum to Arbitrum in a multi-step procedure.

The process starts when the registerTokenToL2 function is called using _l2Address from
the token to register. This value can be either 0x0 or some other address. Once a non-zero
address is used, only the same input can be used to recreate the retryable ticket:

function registerTokenToL2(
address _l2Address,
uint256 _maxGas,
uint256 _gasPriceBid,
uint256 _maxSubmissionCost,
address _creditBackAddress

) public payable returns (uint256) {
require(

ArbitrumEnabledToken(msg.sender).isArbitrumEnabled() == uint8(0xa4b1),
"NOT_ARB_ENABLED"

);

address currL2Addr = l1ToL2Token[msg.sender];
if (currL2Addr != address(0)) {

// if token is already set, don't allow it to set a different L2 address
require(currL2Addr == _l2Address, "NO_UPDATE_TO_DIFFERENT_ADDR");

}

l1ToL2Token[msg.sender] = _l2Address;

address[] memory l1Addresses = new address[](1);
address[] memory l2Addresses = new address[](1);
l1Addresses[0] = msg.sender;
l2Addresses[0] = _l2Address;

Trail of Bits 38 Offchain Labs Security Assessment
PUBLIC

emit TokenSet(l1Addresses[0], l2Addresses[0]);

bytes memory _data = abi.encodeWithSelector(
L2CustomGateway.registerTokenFromL1.selector,
l1Addresses,
l2Addresses

);

return
sendTxToL2(

inbox,
counterpartGateway,
_creditBackAddress,
msg.value,
0,
_maxSubmissionCost,
_maxGas,
_gasPriceBid,
_data

);
}

Figure 12.2: registerTokenToL2 function in L1CustomGateway

On the Arbitrum side, the code just maps L1 and L2 addresses if the sender is correct,
regardless of the validity of the data itself.

function registerTokenFromL1(address[] calldata l1Address, address[] calldata
l2Address) external onlyCounterpartGateway {
// we assume both arrays are the same length, safe since its encoded by the L1
for (uint256 i = 0; i < l1Address.length; i++) {
// here we don't check if l2Address is a contract and instead deal with that

behaviour
// in `handleNoContract` this way we keep the l1 and l2 address oracles in sync
l1ToL2Token[l1Address[i]] = l2Address[i];
emit TokenSet(l1Address[i], l2Address[i]);

}
}

Figure 12.2: registerTokenFromL1 function in L2CustomGateway

However, it is possible to break the assumptions in the L1 code using the fact that retryable
tickets can be executed out of order. A token administration could force the token to call
registerTokenToL2 function using 0x0 as _l2Address but with a low gas/value amount,
forcing the retryable ticket to go directly into the retryable queue. Then, the same user can
force the token to again call the registerTokenToL2 function, but using a non-zero
address as _l2Address. This time, the retryable ticket can be immediately redeemed.
However, the old ticket will still be available for execution.

Trail of Bits 39 Offchain Labs Security Assessment
PUBLIC

Note that the same issue affects the selection of gateway using
L1GatewayRouter.setGateway.

Exploit scenario
1. Eve deploys a new token that has been audited and has no security or correctness

issues.
2. Alice buys 20 of Eve's tokens.
3. Eve registers her token into Arbitrum L2, secretly keeping an extra retryable ticket

that overrides its address to zero.
4. Alice starts moving her tokens into Arbitrum using the bridge.
5. Eve triggers the extra retryable override in her token address, trapping Alice’s 20

tokens.

Recommendations
Short term, consider adding extra validation on the Arbitrum side to verify that retryable
tickets are not executed out of order. Keep in mind that the owner of the gateway should
still be able override token addresses.

Long term, review the impact of the out-of-order execution resulting from retryable tickets
across the codebase.

Trail of Bits 40 Offchain Labs Security Assessment
PUBLIC

13. Assumption of all tokens being burned in outboundEscrowTransfer

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBGOV-13

Target:
● tokenbridge/arbitrum/gateway/L1ReverseCustomGateway.sol
● tokenbridge/arbitrum/gateway/L2CustomGateway.sol

Description
The sender balance checks performed by the L1ReverseCustomGateway and
L2CustomGateway contracts’ outboundEscrowTransfer assume that any change in
balance is caused by tokens being burned.

Whenever tokens are bridged between Arbitrum and Ethereum, a mint-and-burn
mechanism is used. This allows tokens to properly track their supply in the adequate chain
(i.e., Ethereum in the case of “L1-native tokens” and Arbitrum in the case of “L2-native
tokens” or “reverse tokens”).

To support this burning mechanism, tokens that implement bridging to Arbitrum using the
L1ReverseCustomGateway or to Ethereum using L2CustomGateway contract are
expected to comply with a particular specification.

In the case of the L1-native tokens, their L2 counterpart has to comply with the IArbToken
interface, and in the case of L2-native tokens, their L1 counterpart would need to comply
with the L1ReverseToken interface.

interface IArbToken {
function bridgeMint(address account, uint256 amount) external;

function bridgeBurn(address account, uint256 amount) external;

function l1Address() external view returns (address);
}

Figure 13.1: IArbToken interface

interface L1ReverseToken is L1MintableToken {
function bridgeBurn(address account, uint256 amount) external;

Trail of Bits 41 Offchain Labs Security Assessment
PUBLIC

}

Figure 13.2: L1ReverseToken interface

This bridgeBurn is used whenever a withdrawal is triggered (i.e., when L1-native tokens
are bridged back to Ethereum and when L2-native tokens—reverse tokens—are bridged
back to Arbitrum). However, the way the bridge determines the amount of tokens that have
been burned—and thus the amount of tokens that are being withdrawn—does not offer
enough security guarantees when it comes to custom token implementations.

function outboundEscrowTransfer(
address _l2Token,
address _from,
uint256 _amount

) internal virtual override returns (uint256 amountBurnt) {
uint256 prevBalance = IERC20(_l2Token).balanceOf(_from);

super.outboundEscrowTransfer(_l2Token, _from, _amount);

uint256 postBalance = IERC20(_l2Token).balanceOf(_from);
return SafeMath.sub(prevBalance, postBalance);

}

Figure 13.3: outboundEscrowTransfer function in L2CustomGateway.sol

As shown above, the balance of _from is checked before and after executing the super
outboundEscrowTransfer function, which will call bridgeBurn on the token contract
(Figure 13.4) . These balance checks are used to calculate the amount of tokens that were
burned by the user.

function outboundEscrowTransfer(
address _l2Token,
address _from,
uint256 _amount

) internal virtual returns (uint256 amountBurnt) {
IArbToken(_l2Token).bridgeBurn(_from, _amount);
return _amount;

}

Figure 13.4: outboundEscrowTransfer function in L2CustomGateway.sol

However, if the L2 token implementation is non-standard and has on-transfer hooks, then
the caller (_from) could transfer funds to a different address during the bridgeBurn. The
transfer would decrease the balance of the _from address but not necessarily burn, or
remove the tokens from, the supply. Thus, a user could bridge tokens, transfer them to
another during the token hook, and inflate the aggregate (L1 and L2) total supply of the
token.

Trail of Bits 42 Offchain Labs Security Assessment
PUBLIC

function outboundTransfer(
address _l1Token,
address _to,
uint256 _amount,
uint256, /* _maxGas */
uint256, /* _gasPriceBid */
bytes calldata _data

) public payable override returns (bytes memory res) {
[...]

_amount = outboundEscrowTransfer(l2Token, _from, _amount);
[...]

}

Figure 13.5: outboundTransfer function in L2ArbitrumGateway.sol

function outboundTransfer(
address _l1Token,
address _to,
uint256 _amount,
uint256 _maxGas,
uint256 _gasPriceBid,
bytes calldata _data

) public payable override returns (bytes memory res) {
return

outboundTransferCustomRefund(_l1Token, _to, _to, _amount, _maxGas,
_gasPriceBid, _data);
}

function outboundTransferCustomRefund(
address _l1Token,
address _refundTo,
address _to,
uint256 _amount,
uint256 _maxGas,
uint256 _gasPriceBid,
bytes calldata _data

) public payable virtual override returns (bytes memory res) {
require(isRouter(msg.sender), "NOT_FROM_ROUTER");
[...]
_amount = outboundEscrowTransfer(_l1Token, _from, _amount);
[...]

}

Figure 13.6: outboundTransfer function in L1ArbitrumGateway.sol

Exploit scenario
A user registers a reverse token in the Arbitrum bridge that implements on-transfer hooks
(e.g., ERC777 or custom ERC20) that notify sender and recipient of the transfer. Whenever
the tokens are being bridged from Ethereum to Arbitrum (i.e., they are withdrawn), the

Trail of Bits 43 Offchain Labs Security Assessment
PUBLIC

bridgeBurn function of the token contract is called and the on-transfer hook is triggered.
This results in the transfer of the execution’s control flow to the sender, who is notified of
the transfer.

Eve, a malicious user, notices that the outboundEscrowTransfer function of the
L1ReverseGateway queries the balance of the sender before and after the call to
bridgeBurn. Capitalizing on this fact, Eve deploys a malicious contract with a fallback
function that sends part of its balance to a different address when the on-transfer hook of
the bridgeBurn function is executed.

Eve uses the malicious contract to withdraw her funds into Arbitrum. The on-transfer hook
is triggered, and a part of the contract’s balance is transferred to a different address.
Because the outboundEscrowTransfer relies on the balance of the sender to determine
the amount of tokens that were burned, the bridge registers an inflated withdrawal.
Although a part of Eve’s tokens was burned, a bigger part was transferred out of her
address into a different one she controls.

This allows Eve to withdraw more tokens than she should be able to and therefore to steal
tokens from the bridge.

For a concrete example:
● Eve has a balance of 100 tokens.
● Eve triggers a withdrawal of 25 tokens through the malicious contract.
● The on-transfer hook transfers 75 tokens from Eve’s contract address to another

address she controls.
● The bridgeBurn function burns 25 tokens.
● 100 tokens are registered as “withdrawn” because Eve’s balance decreased by 100.

Recommendations
Short term, consider one of the following:

● Check that totalSupply decreases by the same amount that the user burns
following the bridgeBurn call.

● Transfer tokens from the caller to the gateway contract and track the gateway
contract’s change in balance during transfer and burning.

Long term, carefully review interactions with third-party code and their trust assumptions.
Minimize trust in third-party contracts by implementing stricter validation.

Trail of Bits 44 Offchain Labs Security Assessment
PUBLIC

14. Dead code in outboundTransferCustomRefund

Severity: Informational Difficulty: Undetermined

Type: Data Validation Finding ID: TOB-ARBGOV-14

Target: tokenbridge/ethereum/gateway/L1ArbitrumGateway.sol

Description
Tokens can register their official gateways with the L1ArbitrumRouter. The gateway logic
no longer allows arbitrary callers, and instead allows only router contracts. However, the
codebase still contains remnant dead code that supports arbitrary callers:

function outboundTransferCustomRefund(
address _l1Token,
address _refundTo,
address _to,
uint256 _amount,
uint256 _maxGas,
uint256 _gasPriceBid,
bytes calldata _data

) public payable virtual override returns (bytes memory res) {
require(isRouter(msg.sender), "NOT_FROM_ROUTER");
// This function is set as public and virtual so that subclasses can override
// it and add custom validation for callers (ie only whitelisted users)
address _from;
uint256 seqNum;
bytes memory extraData;
{

uint256 _maxSubmissionCost;
if (super.isRouter(msg.sender)) {

// router encoded
(_from, extraData) =

GatewayMessageHandler.parseFromRouterToGateway(_data);
} else {

_from = msg.sender;
extraData = _data;

}

Figure 14.1: The outboundTransferCustomRefund function in L1ArbitrumGateway.sol

Trail of Bits 45 Offchain Labs Security Assessment
PUBLIC

Note that this code is also present in the L2 gateway contracts; however, those do not have
the require statement that restricts the caller to the router.

Recommendations
Short term, if the function should be callable only by the router, consider removing the
else statement. Otherwise, clarify the intended access controls for the
outboundTransferCustomRefund function.

Long term, remove unused code from a codebase. This will help keep the contracts cleaner
and more readable.

Trail of Bits 46 Offchain Labs Security Assessment
PUBLIC

15. Lack of contract existence checks in the gateway may not detect failed
execution

Severity: Undetermined Difficulty: High

Type: Data Validation Finding ID: TOB-ARBGOV-15

Target: tokenbridge/ethereum/gateway/L1ERC20Gateway.sol

Description
The L1ERC20Gateway contract uses staticcall without checking contract existence. This
may lead to tokens getting stuck on the L1ERC20Gateway.

For a user to bridge a token through the L1ERC20Gateway, the token’s name, symbol, and
number of decimals must be encoded on layer 1. This process uses the callStatic
function to retrieve the results of an external call:

/**
* @notice utility function used to perform external read-only calls.
* @dev the result is returned even if the call failed or was directed at an EOA,
* it is cheaper to have the L2 consumer identify and deal with this.
* @return result bytes, even if the call failed.
*/
function callStatic(address targetContract, bytes4 targetFunction)

internal
view
returns (bytes memory)

{
(

,
/* bool success */
bytes memory res

) = targetContract.staticcall(abi.encodeWithSelector(targetFunction));
return res;

}

Figure 15.1: The callStatic function in L1ERC20Gateway.sol

This data is sent verbatim to layer 2, which decodes the token’s name, symbol, and number
of decimals before the bridge is initialized. The parsing for these return values assumes the
name and symbol are strings and that the decimals are uint8. If any of the types or parsing
fails, tokens will not be redeemable and be stuck on the L1ERC20Gateway.

/**

Trail of Bits 47 Offchain Labs Security Assessment
PUBLIC

* @notice initialize the token
* @dev the L2 bridge assumes this does not fail or revert
* @param _l1Address L1 address of ERC20
* @param _data encoded symbol/name/decimal data for initial deploy
*/
function bridgeInit(address _l1Address, bytes memory _data) public virtual {

(bytes memory name_, bytes memory symbol_, bytes memory decimals_) = abi.decode(
_data,
(bytes, bytes, bytes)

);
// what if decode reverts? shouldn't as this is encoded by L1 contract

/*
* if parsing fails, the type's default value gets assigned
* the parsing can fail for different reasons:
* 1. method not available in L1 (empty input)
* 2. data type is encoded differently in the L1 (trying to abi decode the

wrong data type)
* currently (1) returns a parser fails and (2) reverts as there is no

`abi.tryDecode`
* https://github.com/ethereum/solidity/issues/10381
*/

(bool parseNameSuccess, string memory parsedName) = BytesParser.toString(name_);
(bool parseSymbolSuccess, string memory parsedSymbol) =

BytesParser.toString(symbol_);
(bool parseDecimalSuccess, uint8 parsedDecimals) =

BytesParser.toUint8(decimals_);

Figure 15.2: The bridgeInit function in StandardArbERC20.sol

Recommendations
Short term, either:

● Add a contract existence check if the function is expected to be used only for tokens
and not for externally owned accounts.

● Document the location of the associated L2 consumer identification check and/or
what the L2 check entails. Interconnected calls should be explicitly documented to
ensure correct assumptions are being made across systems.

Long term, document assumptions that are made between L1 and L2 and where checks
should occur. Explicit data validation across different platforms and languages is especially
important for a codebase of this level of complexity.

Trail of Bits 48 Offchain Labs Security Assessment
PUBLIC

16. Cross-chain message out-of-order execution impacts sequential proposal
execution

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-ARBGOV-16

Target: governance/src/L1ArbitrumTimelock.sol,
governance/src/ArbitrumTimelock.sol

Description
Out-of-order execution of outbox transactions on L1 and retryable tickets on L2 can lead to
unexpected results when governance proposals rely on specific ordering of execution of
actions.

Part of the governance system lives in Ethereum mainnet and can involve the use of
retryable tickets:

/// @dev If the target is reserved "magic" retryable ticket address
address(bytes20(bytes("retryable ticket magic")))
/// we create a retryable ticket at provided inbox; otherwise, we execute directly
function _execute(address target, uint256 value, bytes calldata data)

internal
virtual
override

{
if (target == RETRYABLE_TICKET_MAGIC) {

// if the target is reserved retryable ticket address,
// we retrieve the inbox from the data object and
// then we create a retryable ticket,
(

…

Figure 16.1: Code to execute proposal that require retryable tickets in L1ArbitrumTimelock

At the same time, passed proposals can be executed with a certain order either in a batch
or using the predecessor field:

/// @inheritdoc TimelockControllerUpgradeable
/// @dev Adds the restriction that only the counterparty timelock can call this func
function scheduleBatch(

address[] calldata targets,
uint256[] calldata values,
bytes[] calldata payloads,

Trail of Bits 49 Offchain Labs Security Assessment
PUBLIC

bytes32 predecessor,
bytes32 salt,
uint256 delay

) public virtual override (TimelockControllerUpgradeable) onlyCounterpartTimelock {
TimelockControllerUpgradeable.scheduleBatch(

targets, values, payloads, predecessor, salt, delay
);

}

/// @inheritdoc TimelockControllerUpgradeable
/// @dev Adds the restriction that only the counterparty timelock can call this func
function schedule(

address target,
uint256 value,
bytes calldata data,
bytes32 predecessor,
bytes32 salt,
uint256 delay

) public virtual override (TimelockControllerUpgradeable) onlyCounterpartTimelock {
TimelockControllerUpgradeable.schedule(target, value, data, predecessor, salt,

delay);
}

Figure 16.2: scheduleBatch and schedule functions in L1ArbitrumTimelock.sol

However, a malicious user can leverage out-of-order execution of retryable tickets to break
the assumptions of one proposal’s execution following another proposal’s execution.

Exploit Scenario
Governance votes the execution of two proposals: A and B, where A is a prerequisite of B.
The first proposal produces a retryable ticket, but the execution of this ticket fails for some
reason and needs to be manually redeemed. The L1Timelock contract registered the
execution of A as successful and allows the execution of B, which can cause failed upgrades
or some other unforeseen consequences.

Recommendations
Short term, consider following changes for both L1 and L2 timelock contracts:

1. Override the schedule and scheduleBatch functions of timelock to not accept the
predecessor argument.

2. Override the scheduleBatch to accept only one action in the array.

Long term, carefully read through the imported library code to understand the design
decisions and implement customizations to suit your requirements and limitations.

Trail of Bits 50 Offchain Labs Security Assessment
PUBLIC

17. Retryable tickets used in governance proposals can be silently discarded

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-ARBGOV-17

Target: governance/src/L1ArbitrumTimelock.sol

Description
Inconsistency in API and ArbOS retryable ticket parser validation in the Inbox contract can
cause the ArbOS to silently discard a retryable ticket.

Part of the governance system lives in Ethereum mainnet, and can involve the use of
retryable tickets:

/// @dev If the target is reserved "magic" retryable ticket address
address(bytes20(bytes("retryable ticket magic")))
/// we create a retryable ticket at provided inbox; otherwise, we execute directly
function _execute(address target, uint256 value, bytes calldata data)

internal
virtual
override

{
if (target == RETRYABLE_TICKET_MAGIC) {

// if the target is reserved retryable ticket address,
// we retrieve the inbox from the data object and
// then we create a retryable ticket,
(

[...]

Figure 16.1: Code to execute proposal that require retryable tickets in L1ArbitrumTimelock

The bridge verifies the execution of the retryable tickets. In particular, the Inbox contract
checks that the ticket has enough value for the submission to succeed:

function createRetryableTicket(
address to,
uint256 l2CallValue,
uint256 maxSubmissionCost,
address excessFeeRefundAddress,
address callValueRefundAddress,
uint256 gasLimit,
uint256 maxFeePerGas,
bytes calldata data

) external payable whenNotPaused onlyAllowed returns (uint256) {

Trail of Bits 51 Offchain Labs Security Assessment
PUBLIC

// ensure the user's deposit alone will make submission succeed
..
if (

msg.value < (maxSubmissionCost + l2CallValue + gasLimit * maxFeePerGas) &&
msg.sender != UNSAFE_CREATERETRYABLETICKET_CALLER

) {
revert InsufficientValue(

maxSubmissionCost + l2CallValue + gasLimit * maxFeePerGas,
msg.value

);
}

Figure 16.2: createRetryableTicket in Arbitrum Inbox contract

However, these checks are not enough, since the ArbOS will discard a retryable ticket with
a gas limit larger than 2**64 - 1. A user submitting a ticket using maxFeePerGas equal to
zero can bypass the msg.value check. In that case, ArbOS will silently discard the retryable
message later, during the parsing:

func parseSubmitRetryableMessage(rd io.Reader, header *L1IncomingMessageHeader,
chainId *big.Int) (*types.Transaction, error) {

...
gasLimitBig := gasLimit.Big()
if !gasLimitBig.IsUint64() {

return nil, errors.New("gas limit too large")
}
...

Figure 16.2: Part of the parseSubmitRetryableMessage function in incomingmessage.go

Exploit Scenario
Governance votes the execution of proposal A, which creates a retryable ticket. However,
the execution of this ticket fails because the parameters of gas limit and max fee per gas
are incorrect. Instead of being allowed to re-execute it, the ticket is never created and the
proposal should be voted and executed again.

Recommendations
Short term, whenever possible, validation should be performed as early as possible (e.g.,
on-chain) to prevent instances in which invalid data is deemed valid on-chain but invalid
off-chain, which can create misleading expectations to users.

Long term, thoroughly document the assumptions regarding ticket creation and how these
are processed by off-chain components to prevent similar issues.

Trail of Bits 52 Offchain Labs Security Assessment
PUBLIC

18. Lack of contract existence checks is error-prone when scheduling
transactions through the timelock

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-ARBGOV-18

Target: governance/src/L1ArbitrumTimelock.sol

Description
A lack of contract existence check will cause the contract to consider proposals as
successfully executed even when their intended side effects have not been triggered.

Arbitrum’s governance system uses a timelock contract through which proposals are
submitted. Through this contract, proposals are first scheduled and, after a period of time,
executed. When a proposal is ready to be executed, any address with the EXECUTOR_ROLE
can call the execute function to trigger the proposal’s execution.

function execute(
address target,
uint256 value,
bytes calldata payload,
bytes32 predecessor,
bytes32 salt

) public payable virtual onlyRoleOrOpenRole(EXECUTOR_ROLE) {
bytes32 id = hashOperation(target, value, payload, predecessor, salt);

_beforeCall(id, predecessor);
_execute(target, value, payload);
emit CallExecuted(id, 0, target, value, payload);
_afterCall(id);

}

Figure 18.1: execute function in OpenZeppelin’s TimelockControllerUpgradeable

Arbitrum’s timelock implementation overrides OpenZeppelin’s by including additional
functionality to handle retryable tickets in the _execute function; however,
OpenZeppelin’s original code is still relied upon for other use-cases.

function _execute(address target, uint256 value, bytes calldata data)
internal
virtual
override

{

Trail of Bits 53 Offchain Labs Security Assessment
PUBLIC

if (target == RETRYABLE_TICKET_MAGIC) {
[...]

else {
// Not a retryable ticket, so we simply execute
super._execute(target, value, data);

}
}

Figure 18.2: _execute function in L1ArbitrumTimelock

function _execute(
address target,
uint256 value,
bytes calldata data

) internal virtual {
(bool success,) = target.call{value: value}(data);
require(success, "TimelockController: underlying transaction reverted");

}

Figure 18.3: _execute function in OpenZeppelin’s TimelockControllerUpgradeable.sol

In this instance, OpenZeppelin’s implementation uses a low-level call, which will always
succeed if target is not a contract. Because there is no way to indicate whether target is
supposed to be a contract or not, any proposal that is supposed to target a contract, but
that contract has not been deployed or has been destroyed, will be deemed “successfully
executed” even though its intended side effects have not been triggered.

Exploit scenario
Governance votes, approves, and schedules a proposal to deploy a new contract and then
execute some functionality implemented by it.

A mistake is made during the proposal execution, and the transaction that would deploy
the new contract is performed after the transaction that calls the contract. Because no
contract existence check is made, the proposal is deemed successful even though some of
the intended side effects (i.e., calling the newly deployed contract to execute the
functionality) have not been triggered. A new proposal should be created and voted on,
and the expected delay should be enforced.

Recommendations
Short term, consider including a contract existence check when data is not empty;
however, note that this will prevent sending ETH and non-empty data to EOAs, which may
be a use-case that the Offchain Labs team would like to support. Use an retryable ticket
special address that contains more letters, which will enable the compiler to successfully
verify it.

Trail of Bits 54 Offchain Labs Security Assessment
PUBLIC

Long term, thoroughly document the assumptions about proposal correctness when
scheduling and executing them through the timelock.

Trail of Bits 55 Offchain Labs Security Assessment
PUBLIC

19. Potential overflow in TokenDistributor causes imprecise claims

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-ARBGOV-19

Target: governance/src/TokenDistributor.sol

Description
In the setRecipients function, the unchecked block allows sum to overflow. If sum
overflows, the balance check may succeed and result in users having a claim to more
tokens than are available in the contract. In practice, the claimable amounts should add up
to the token supply, which will not exceed the maximum 256-bit, unsigned integer.

{
[...]

unchecked {
sum += _claimableAmount[i];

}
}

// sanity check that the current has been sufficiently allocated
require(token.balanceOf(address(this)) >= sum, "TokenDistributor: not enough
balance");

Figure 19.1: The setRecipients function in TokenDistributor.sol

Exploit Scenario
Alice, the owner of the TokenDistributor contract, accidentally sets a very high claimable
amount (e.g., the maximum 256-bit unsigned integer) for one of the recipients. As a result,
the recipient is able to claim all available tokens, leaving the other recipients with nothing.

Recommendations
Short term, remove the unchecked block around the calculation of sum.

Long term, ensure that validations will not permit exceptional behavior such as overflows.

Trail of Bits 56 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/governance/blob/6bd1a880df96b36508b55a10c8f29327711f3750/src/TokenDistributor.sol#L97-L103

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 57 Offchain Labs Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 58 Offchain Labs Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Front-Running
Resistance

The system’s resistance to front-running attacks

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Trail of Bits 59 Offchain Labs Security Assessment
PUBLIC

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 60 Offchain Labs Security Assessment
PUBLIC

C. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

TokenDistributor
● Consider allowing other addresses to claim tokens on behalf of the token

owners. The claim function allows only the sender to claim their own tokens, but if
the owner is a smart contract, a call to that contract could be impossible.

● Document the fact that the sweep function can be called multiple times. The
self-destruction of an Ethereum contract occurs only at the end of a top-level
transaction, so the sweep function can be called multiple times, emitting more than
one Swept event in a single transaction. Off-chain components should not assume a
single Swept event on a transaction.

L1ArbitrumGateway and L1CustomGateway
● Consider explicitly overriding the outboundTransfer function of the

L1ArbitrumGateway into L1CustomGateway to apply the nonReentrant modifier.
The outboundTransfer function in L1ArbitrumGateway calls
outboundTransferCustomRefund, which is overridden in L1CustomGateway with
the nonReentrant modifier, making it secure against reentrancy. However, if some
code is later added in the outboundTransfer function before the call to
outboundTransferCustomRefund, that new code will not be secure against
reentrancy.

L1GatewayRouter
● ERC20 tokens allowing users to make external calls also allow users to set

malicious gateways. The L1GatewayRouter contract allows tokens to call the
setGateway function, which registers the provided gateway with the msg.sender.
If a token allows users to make an external call, then users can exploit it to register a
malicious gateway while it is not already set.

TestUpgrade
● The upgradeWithValue function checks that the balance is exactly equal to the

provided value argument, which may fail if used in production.

L1ArbitrumTimelock
● _execute ignores the provided value argument while creating a retryable

ticket. This issue may lead to unexpected behavior if the proposer does not pay

Trail of Bits 61 Offchain Labs Security Assessment
PUBLIC

attention while creating the proposal. It should be documented that the value
parameter is encoded in the data argument for L1 timelock instead of the value
argument for L1 timelock. Additionally, consider correcting the incomplete comment
that mentions value being ignored.

Trail of Bits 62 Offchain Labs Security Assessment
PUBLIC

