
11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 1/81

Arbitrum Smart Contracts

Date November 2021

Auditors
Martin Ortner, Dominik
Muhs, Heiko Fisch

1 Executive Summary
This report presents the results of our engagement with Arbitrum to review
their L1 and L2 smart contract systems.

The review was conducted over four weeks, from October 4th, 2021 to
November 5th, 2021. A total of 50 person-days were spent.

During the first week, the assessment team tried to get an overview of the whole
system, starting with an Arbitrum Deep-Dive to mapping out the code-bases in
scope (arb-bridge-eth , arb-bridge-peripherals). Most of the high-level diagrams
were created during this week.

One team member focused on the TokenBridge (peripherals) during the second
week, while another started to dive deeper into the Rollup/Nodes/Challenges
logic. The client was notified of a potential security issue with the TokenBridge
and chose to upgrade their contracts the same week.

After a one-week hiatus, one more person completed the assessment team.
While this person ramped up with the architecture, the others combined forces
on the Rollup/Nodes/Challenges logic after finishing work on the TokenBridge.

AUDITS
FUZZING
SCRIBBLE
ABOUT

https://developer.offchainlabs.com/docs/inside_arbitrum
https://consensys.net/diligence
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 2/81

The final week concluded the review of the Rollup/Nodes/Challenges logic.

2 Scope
This assessment heavily prioritized Arbitrum’s L1 and L2 smart contracts.
Components in the arch folder were excluded from scope.
Off-chain
components have been deemed out-of-scope.

Our review focused on the commit hash d730bc40932c24e239577d16b1737455ab75ee26 .
The list of files in scope can be found in the Appendix.

2.1 Objectives

Together with the Arbitrum team, we identified the following priorities for our
review:

1. Identify vulnerabilities and weaknesses relating to the passing of messages
between L1 and L2.

2. Review the token bridge and other peripherals to ensure the security of
funds locked in escrow.

3. Analyze potential malicious validator behavior and validate that the
challenge process cannot be manipulated without punishment.

4. Ensure that the system is implemented consistently with the intended
functionality and without unintended edge cases.

5. Identify known vulnerabilities particular to smart contract systems, as
outlined in our Smart Contract Best Practices, and the Smart Contract
Weakness Classification Registry.

3 System Overview
This section describes the top-level/deployable contracts, their inheritance
structure and interfaces, actors, permissions and important contract
interactions of the system under review. Please refer to Section 4 - Security
Specification for a security-centric view on the system.

https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 3/81

Contracts are depicted as boxes. Public reachable interface methods are
outlined as rows in the box. The 🔍 icon indicates that a method is declared as
non-state-changing (view/pure) while other methods may change state. A yellow
dashed row at the top of the contract shows inherited contracts. A green
dashed row at the top of the contract indicates that that contract is used in a
usingFor declaration. Modifiers used as ACL are connected as yellow bubbles in
front of methods.

3.1 Arbitrum Core Architecture

Arbitrum core architecture

The core architecture consists of a Bridge contract, an Inbox (L1->L2
messaging), an Outbox (L2->L1 messaging; 7-days delay to challenge rollup
blocks), a Rollup contract, that, depending on whether an admin or user is
calling it, provides different functionality (AdminFacet , UserFacet). Rollup blocks
are submitted to the Rollup contract as Node contracts that can be challenged.
Users can become stakers in the the Rollup contract and stake on valid
“blocks”/ Node contracts.

https://consensys.net/diligence/audits/private/awag7hx1lzb672/img/arbitrum-architecture.svg

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 4/81

The system provides various factories. The RollupCreator is used to deploy a new
Rollup setup with RollupFacet implementations, Inboxes/Outboxes,

EventBridge. It calls the BridgeCreator to deploy the bridge setup and configures
the NodeFactory, ChallengeFactory for the contracts. RollupCreator is one
entrypoint to deploy the system.

3.2 Arbitrum TokenBridge Peripherals

Bridge peripherals architecture

The TokenBridge is an application built on top of the Arbitrum Bridge (Core
Logic). It allows users to bridge L1 Tokens to L2 via the generic Arbitrum bridge.
An admin can configure tokens and their respective gateways. The setup is
based on an L1Router that maps token addresses to L1Gateway contracts. Users
have to go through the L1Router in order to bridge L1 tokens to L2. An admin
configuring the L1Router indirectly also configures the L2Router counterpart (via
bridge messages). L1 ETH is escrowed on the Arbitrum bridge while specific
tokens are escrowed in the L1Gateway contracts. WETH is first unwrapped and
then sent to the bridge, escrowed there, and then wrapped on L2 before being
made available to users.

3.3 Arbitrum Challenge Details

https://consensys.net/diligence/audits/private/awag7hx1lzb672/img/arbitrum-bridge-peripherals.svg

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 5/81

General challenge functionality notes

4 Security Specification
This section describes, from a security perspective, the expected behavior of
the system under review. It is not a substitute for documentation. The purpose
of this section is to identify specific security properties and outline trust
assumptions. While the security impact of the trust model notes is limited, they
contain information that should be taken into account for the system’s
continued security.

https://consensys.net/diligence/audits/private/awag7hx1lzb672/img/arbitrum-challenge.svg

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 6/81

4.1 Rollup

Admin

The rollup admin (a multisig, acc. to the client) is set by setting the owner

variable on Rollup initialization. The owner (and proxy owner) is in a very
exposed position (risk) as it can theoretically take over complete control of
the Rollup contract (upgrade, update settings, and facets), and this Rollup

contract basically “owns” the bridge and, therefore, indirectly all the
escrowed funds.

The rollup admin controls who can interact with the Rollup user
functionalities (onlyValidator modifier).

It is a closed system right now that is controlled by the rollup admin ((a)
via access restrictions configurable by the admin, (b) via pausable, (c)
the Rollup contract seems to be upgradeable/proxied).

The admin decides who can challenge/confirm/reject block
submissions which might undermine trust in the system. e.g.,
createChallenge can only be called by onlyValidator . That list is manually

maintained by the Rollup Admin, while the initial assumption was that
anyone should be able to call out malicious behavior and force a
challenge.

System properties can be changed at any time, with only little input
validation via the RollupAdminFacet (risk of misconfiguration).

The admin can interfere with challenges up to a point where they can force
a challenge outcome (forceResolveChallenge).

The admin can forceCreateNode and forceConfirmNode to submit an
unchallengeable block.

The admin can pause the user functionalities. A similar effect might be
created by an admin removing everyone from the onlyValidator access list.

The contract can be upgraded due to the use of a proxy pattern. However,
an admin can also choose to change the Admin and User facet while the
contract is in use.

An admin can basically upgrade the contract to run any code.

An admin may interfere with users by unexpectedly upgrading user
functionality while they interact with the system. (Consider only

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 7/81

allowing upgrades while the contract is paused.)

The ownership transfer is one-step which might come with a significant risk
of losing access to the contract.

If this is misconfigured, the AdminFacet will not be callable anymore.

System parameter changes are not always sanity checked, increasing the
risk for inconsistent configurations.

Parameter changes may interfere with users and block them from
participating in the system or the system’s sub-processes (e.g.,
challenges).

For example, a misconfiguration of confirmedPeriodBlocks to zero may
allow anyone to initialize the contract again, setting a malicious admin
facet, gaining control of the bridge, and/or destroying the Rollup
contract.

setStakeToken bypasses sanity checks UserFacet.initialize would
otherwise perform, leading to an inconsistent configuration. The stake
already provided with the previously configured token will be
accounted for in the new token, while the old token amounts will
become inaccessible. Changing from an ERC20 token to ETH may reset
the contract’s initialization state and allow anyone to initialize it again.

setBaseStake allows setting a staking requirement of zero, which may
harm the system’s security. Furthermore, the baseStake should be
multiple times higher than the minimum gas required for one party to
resolve a challenge, or else this may open up a griefing vector.

onlyValidator/User

Can add newStake to become Staker.

Note Race: might block confirmNextNode if stake joins just before the confirm
call (might be intentional, griefing). A malicious stake can grief
confirmNextNode and may grief for removal with zero risk by not taking on the

latest valid tip. Note that the longer someone delays block confirmation, the
higher the stake requirements.

Note: Anyone can remove a new Staker immediately by calling
returnOldDeposit if they don’t bundle their call to newStake with stakeOnExisting

/ stakeOnNewNode .

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 8/81

Note: A zombie cannot be a Staker unless they’re removed from their
Zombie status.

Can add funds to any existing Staker (usually staker would do this).

Can confirmNextNode if block deadlines are met and all stakers are staked on
the next node (everyone agrees).

Can be blocked by a single staker not advancing their stake to a new
tip.

Can rejectNextNode if block deadlines expired and the node does not point to
lastConfirmed or no staker is staked.

Can returnOldDeposit on any Staker (griefing: when called on new staker that
does not stake on the tip).

Can createChallenge for competing nodes.
a challenge contract is created, and challengers are proving their
nodes. finally, the challenge contract resolves the challenge by
submitting the result via completeChallenge .

Note: It is assumed that this method should not be restricted to
onlyValidator given that anyone should be able to challenge
misbehavior.

Can removeZombie .
Removes a given zombie from nodes it is staked on.

Can removeOldZombies .
Remove any zombies whose latest stake is earlier than the first
unresolved node.

Can withdrawStakerFunds .
Stake that can be withdrawn (e.g., because returnOldDeposit or
reduceStake where called) is accounted internally until withdrawStakerFunds

is called, allowing a staker to pull their stake off the system.

Staker

Note: Stakers should always stake way ahead of lastConfirmed node, or else they
might open themselves up to an attack where anyone can call returnOldDeposit

on them if they are only staked on lastConfirmed .

Can stakeOnExistingNode (supporting a validated rollup block).

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 9/81

Must stake on all previous nodes (or new staker).
Staker can optimize if too far off the tip by removing and re-adding
themselves as staker (automatically stakes them on latestConfirmed) to
then stake at the new validated tip.

Can stakeOnNewNode (submitting a rollup block).
Assumes the previous node is lastStakedNode.

Can reduceStake to the minimum required stake at that moment.

Can “block” node confirmation by not staking at the newly agreed tip.
May be challenged if they disagree on the new tip.

May be removed from stakers via returnOldDeposit if they do not advance
to the new tip .

Challenge contract (called on challenge end)

Calls completeChallenge with the challenge’s final verdict.
1/2 of loser stake is credited to the winner (accounted as stake for the
winner).

1/2 of loser stake is credited to the contract owner (as withdrawable
funds).

The amount of stake that can be slashed from the loser is capped at the
amount the winner has staked (excess is refunded to the loser).

Loser is turned into a zombie and loses its Staker status.

Zombie

Cannot participate in the system until they’re removed from the zombie list.

4.2 Token Bridge

Notes:

All admin functionality takes effect immediately. Users should ensure that
the admin is a trustworthy time-locked/Multisig contract. One admin
account has far-reaching permissions (consider splitting up
responsibilities).

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 10/81

All contracts are deployed as proxies to an implementation that can be
upgraded at any time.

The router does not escrow funds.

L1WETHGateway unwraps WETH -> ETH , bridges ETH via the Arbitrum bridge
(bridge escrows ETH) to L2, L2WETHGateway wraps L2ETH -> L2WETH . WETHGateway

does not escrow funds.

ERC20Gateway and CustomGateway escrow funds in their contracts.

Risk of losing funds is concentrated on the bridge and token gateway
contracts. If someone takes over/exploits the respective contract, all funds
may be lost. There is no concept of a cold/hot escrow with speed breaks to
reduce such risks.

Warning: ERC20Gateway deploys a generic L2ERC20 (StandardArbERC20) on L2

that might not match the L1 characteristics at all. According to the client, it
is up to the users to ensure the token is bridgeable to their L2

implementation. (Note: de/inflationary tokens, fee token, interest
accumulating tokens, token with callbacks, e.g., ERC777, esoteric tokens
may behave differently on L2 allowing for potential attacks.)

L1CustomGateway admin may misconfigure existing token mapping to block L2

users from spending their tokens.

Anyone can theoretically call initialize() on all the proxy instances and
implementations. Proxies, are initialized by the deployment scripts when
deployed by a factory. Ensure that off-chain deployment scripts deploy &
initialize in one transaction to mitigate front-running. Consider auto-
initializing implementations in the constructor. Implementations are often
not initialized, which bears some security risks, especially if delegatecall or
selfdestruct are reachable for someone who can initialize the contracts

(make sure this is well understood by devs/new hires and verified on
deployment).

L1 - Router

The router does not escrow funds.

Admin/OnlyOwner

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 11/81

Can transfer ownership (insecure one-step transfer; may lose access to
contract if configured with a wrong address).

Can setDefaultGateway on L1 and L2 (L1 side configures L2 via bridge
message).

May configure a zero-address on L2 if L1GW.counterpartGateway() returns
address(0) .

Can be overridden at any time. However, the L2 contract will still be
accessible as access through the router is not enforced on L2 in
contrast to L1.

Can call setGateways on L1, passively configuring matching L2 gateways.
May result in a NOP (and a NOP call on L2) if an empty _token , _gateway

array is provided (hiding a pot. erroneous call).

Allows overriding token-address -> gateway handler contract at any time.

proxyAdmin can call postUpgradeInit after upgrade.

Additionally: onlyWhitelist can updateWhitelistSource . – Note that it is planned to
remove the whitelist altogether.

Anyone/OnlyWhitelisted

Can call outboundTransfer to initiate a token transfer from L1 -> L2 via
configured Gateways.

Token gateway selection is enforced by the L1 token bridge. Direct
interaction with Token Gateway is disabled.

NoOne/Disabled

setGateway is currently disabled.

Router.finalizeInboundTransfer is disabled and needs to be called directly on
the gateway.

L2 - Router

Admin/OnlyOwner indirectly via onlyCounterpartGateway

Bridge calls L2GatewayRouter.setGateway and setDefaultGateway from L1 admin
calls. L1 effectively configures L2GatewayRouter .

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 12/81

Note the interface inconsistency between L1.setGateway and
L2.setGateway .

Anyone/OnlyWhitelisted

Can call outboundTransfer to initiate a token transfer from L2 -> L1 via
configured Gateways. This is optional and users can instead also directly
interact with the L2 Token gateway contracts. The router, therefore, has no
authority over which L2 gateways are currently usable. According to the
client, this ensures users can always spend their L2 tokens back to L1.

NoOne/Disabled

Router.finalizeInboundTransfer is disabled. Note the router and gateways
should not necessarily share an interface given that they fulfill different
purposes and most methods are overridden or functionality disabled.

L1 - Gateway (WETHGateway , ERC20Gateway , CustomGateway)

Admin/onlyOwner

Can L1CustomGateway.forceRegisterTokenToL2 .
Note that an admin can intentionally misconfigure this to block L2->L1

token bridging.

proxyAdmin can call postUpgradeInit after upgrade.

Router

Can initiate outboundTransfer , which sends a bridge message from L1->L2 to
the L2 counterpart.

Note: For ERC20Gateway , the first call to bridge a token configures the
L2.StandardArbERC20 . Allowing any ERC20 token to be used (e.g.
DefaultGateway == ERC20Gateway) may be dangerous due to L1 -> L2 token

contract mismatches.

onlyCounterpartGateway

Only L2 gateway counterpart (via bridge call L2->L1) can
finalizeInboundTransfer after rollup block confirmation. (Basically initiated by a

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 13/81

validator when confirming a rollup block.)

Anyone

May be able to register their own custom tokens in the future. This is
disabled now, and we would not advise enabling this without moderation as
it might be misused for malicious activities.

NoOne/Disabled

L1CustomGatway.registerTokenToL2 is disabled.

L2 - Gateway (WETHGateway , ERC20Gateway , CustomGateway)

Admin/onlyOwner

proxyAdmin can call postUpgradeInit after upgrade.

onlyCounterpartGateway (Note: either L1 counterpart address directly, or L2
aliased L1 address)

L1CustomGateway.registerTokenFromL1 can only be called by an admin on L1 via
L1->L2 bridge call.

Gateway.finalizeInboundTransfer is called via L1Gateway.outboundTransfer L1->L2

bridge call.
For L2ERC20Gateway , the first call deploys the “dummy” StandardArbERC20

token.

Only L2 gateway counterpart (via bridge call L2->L1) can
finalizeInboundTransfer after rollup block confirmation. (Basically initiated by a

validator when confirming a rollup block.)

Anyone

Can call outboundTransfer on the gateway directly to bridge tokens from
L2 -> L1 .

Even if the Router does not allow the token anymore.

5 Findings

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 14/81

Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around
best practices or readability. Code maintainers should use their own
judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be
fixed.

5.1 Router/Gateway - Reentrancy in inbound/outbound
transfer allows arbitrary creation of L2 tokens Critical

Description

Inbound/OutboundTransfer is missing protection to prevent the tokenFrom

account from reentering through a token callback (e.g., ERC777). This
reentrancy allows the caller to effectively escrow fewer tokens on L1 than are
being minted on L2.

Examples

Let’s assume the following scenario:

We bridge the custom token “TOK”

TOK.balanceOf(msg.sender) = 100

TOK.balanceOf(gateway) = 0 (initial balance)

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 15/81

L1GwRouter.outboundTransfer(TOK,...,50){💰 for L2Gas}

--> //GwRouter.outboundTransfer(...)

 --> Gateway(CustomGateway).outboundTransfer(...){💰 for L2Gas}

 --> //L1ArbitrumGateway.outboundTransfer(...)

 --> //L1ArbitrumGateway.outboundEscrowTransfer(TOK, ..., 50)

 prevBalance = 0 (erc20.balanceOf(this))

 --> tok.transferFrom(from, this, 50)

 //start---------------subcall-----------

 //(reentering *from*, before balance changes: ERC777)

 ==> calls *from* who calls ==> L1GwRouter.outboundTransfer(TOK, ..., 50)

 --> //L1ArbitrumGateway.outboundEscrowTransfer(TOK, ..., 50)

 prevBalance = 0 (erc20.balanceOf(this))

 --> tok.transferFrom(from, this, 50) //new balanceOf(msg.sender) = 100 - 50
 postBalance = 50 (erc20.balanceOf(this))

 DIFF = 50 - 0 = 50 ==> createOutboundTx(amount=50)

 //end---------------subcall-----------

 //after subcall/transferFrom: new balanceOf(msg.sender) = 50 - 50 = 0

 postBalance = 100 (erc20.balanceOf(this))

 DIFF = 100 - 0 = 100 ==> createOutboundTx(amount=100)

In this scenario, the attacker spent/escrowed 100 L1 TOK to create 150 L2 TOK
(ERC777, or any custom token w. callback)

An external call (ERC777.transferFrom) allows the from address to reenter the
outboundTransfer function, changing the balance of the contract after prevBalance

but before postBalance is recorded.

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1ArbitrumGateway.so
l:L234-L245

function outboundEscrowTransfer(

 address _l1Token,

 address _from,

 uint256 _amount

) internal virtual returns (uint256 amountReceived) {

 // this method is virtual since different subclasses can handle escrow differ
 // user funds are escrowed on the gateway using this function

 uint256 prevBalance = IERC20(_l1Token).balanceOf(address(this));

 IERC20(_l1Token).safeTransferFrom(_from, address(this), _amount);

 uint256 postBalance = IERC20(_l1Token).balanceOf(address(this));

 return SafeMath.sub(postBalance, prevBalance);

}

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 16/81

Note: This attack can theoretically also happen in L2CustomGateway if the custom
L2 implements callbacks:

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2CustomGateway.sol:
L53-L70

function outboundEscrowTransfer(

 address _l2Token,

 address _from,

 uint256 _amount

) internal override returns (uint256 amountBurnt) {

 uint256 prevBalance = IERC20(_l2Token).balanceOf(_from);

 // in the custom gateway, we do the same behaviour as the superclass, but act
 // for the balances of tokens to ensure that inflationary / deflationary chan
 // are taken into account
 // we ignore the return value since we actually query the token before and af
 // the amount of tokens that were burnt

 super.outboundEscrowTransfer(_l2Token, _from, _amount);

 uint256 postBalance = IERC20(_l2Token).balanceOf(_from);

 return SafeMath.sub(prevBalance, postBalance);

}

Recommendation

Add reentrancy protection (ReentrancyGuard) to both the outbound (escrow)
and inbound (release) interaction flows (L1 and L2).

5.2 RollupAdmin - changing stake token may render existing
stake inaccessible Major

Description

The Rollup Admin can change the token used for staking in a live deployment of
the Rollup contract, which will always lead to inconsistencies or tokens stuck in
the Rollup contract until it is upgraded to support a token change properly.

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 17/81

First, setStakeToken does not enforce any sanity checks on the system’s state.
Examples can include:

require a paused state and no stake tokens currently owned by the system

parametrization of the ERC20 or ETH user facet

checks from initialize to make sure the system has been appropriately
initialized

future initialization checks to prevent accidental reinitialization

Furthermore, if a user already staked tokens to the Rollup contract and an admin
changes the staking token, their deposit will become inaccessible while still
credited as a stake in the new token. Changes to the staking token can mess up
the system’s internal accounting.

One would assume that the proper way of changing the staking token would be
to first pause the contract, then force everyone to withdraw their stake, change
the token and unpause to let stakers continue with their duties. The problem is
that all user methods are whenNotPaused . Hence, there is no way to
withdraw/unstake/force-unstake (via returnOldDeposit) existing stake. Effectively,
there is no consistent way of changing the staking token unless this is
accompanied by a contract upgrade that facilitates that.

If the staking token is changed while users are staked, their old tokens are lost,
their current stake will be accounted for in the new token, but they will very
likely not be able to get out either old or new stake tokens (unless the contract
holds enough new stake tokens).

An admin may call forceRefundStaker on the staker address, but this does force
them to pull out the tokens, and, hence, the old token may be locked in the
contract.

Examples

code/packages/arb-bridge-eth/contracts/rollup/facets/RollupAdmin.sol:L153-
L156

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 18/81

function setStakeToken(address newStakeToken) external override {

 stakeToken = newStakeToken;

 emit OwnerFunctionCalled(13);

}

code/packages/arb-bridge-eth/contracts/rollup/facets/RollupUser.sol:L645-
L657

 */

function withdrawStakerFunds(address payable destination)

 external

 override

 onlyValidator

 whenNotPaused

 returns (uint256)

{

 uint256 amount = withdrawFunds(msg.sender);

 // This is safe because it occurs after all checks and effects

 require(IERC20(stakeToken).transfer(destination, amount), "TRANSFER_FAILED"
 return amount;

}

Recommendation

This and a variety of other admin methods carry a significant risk of
misconfiguration. The contract can be left vulnerable to reinitialization, messing
up internal accounting (active stake during token change), or having other
unexpected effects on user interaction.

Consider removing this method or providing a concrete process to change the
staking token of a live system. Consider requiring the contract to be paused
when changing the setting. Force users' stake to become withdrawable when
changing the token. Allow users to withdraw tokens they previously provided.
Require users to add a new stake in the newly configured token.

5.3 Bisection degree changes can enable malicious
challenges Major

Description

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 19/81

In the Challenge contract’s bisectExection function, it is required that the number
of previously obtained chain hashes matches up with the result receiver’s target
bisection degree. In the system’s context, the result receiver is the RollupUser

facet.

However, an admin can change the facet’s bisection degree. Already initiated
challenges in an ongoing bisection process will fetch the facet’s new bisection
degree and always revert as the new degree does not match the pre-existing
chain hashes. Both stakers are already marked as challenged in the RollupUser

facet. They cannot restart the challenge, and the final counterparty to act will
lose.

In a scenario where admins announce a delayed upgrade of the bisection
degree parameter, an attacker can start a challenge and use their time
contingent to stall the challenge’s progress until the upgrade becomes effective.
As a result, the counterparty will not be able to progress bisection as it always
reverts, eventually resulting in a timeout and a potentially legitimate staker
getting punished.

Consequentially, an attacker can submit arbitrary state changes and bypass the
threat of being challenged - assuming that a parameter change of the bisection
degree is incoming.

Examples

code/packages/arb-bridge-eth/contracts/challenge/Challenge.sol:L161-L167

uint256 challengeExecutionBisectionDegree = resultReceiver

 .challengeExecutionBisectionDegree();

require(

 _chainHashes.length ==

 bisectionDegree(_challengedSegmentLength, challengeExecutionBisectionDe
 "CUT_COUNT"
);

Recommendation

When a new Challenge contract is initialized, it should copy the user facet’s
system parameters into its storage and retrieve them from there for future

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 20/81

reference. Mirrored constant contract state variables will prevent admin
upgrades from interfering with ongoing challenges while allowing subsequent
challenges to reflect the new parameter set.

5.4 ERC20Gateway - Potential L1-to-L2 ERC20 Token
inconsistencies: decimals Major

Description

When bridging an ERC20 token transfer, the L1ERC20Gateway calls out to the
respective token to retrieve name , symbols , and decimals . This external call is
realized via a low-level staticcall , which returns the result as a byte-sequence,
or, if the call fails, returns an empty bytes memory .

“Non-standard” ERC20 implementations (e.g., no getter for decimals) are
gracefully accepted and mapped to a StandardArbErc20Token on the L2 side. If one
of name , symbol , or decimals is not provided, a default ("" , "" , 18) will be
assumed. If the L1 token decimals is of a different type, this might result in a
broken initialization on L2 .

Assuming token properties can be dangerous as behavior between L1 and L2
might be different. For example, if an L1 token has 0 decimals but does not
expose the decimals getter, the code will assume an 18 decimals on the L2 side.
A token transfer of 10.000 (decimals 0 -> 10.000) tokens on L1 will show up as
10.000 * 10^-18 on an L2 UI visualizing the token value.

Examples

L1 side

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1ERC20Gateway.sol:L
62-L73

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 21/81

function callStatic(address targetContract, bytes4 targetFunction)

 internal

 view

 returns (bytes memory)

{

 (

 ,

 /* bool success */

 bytes memory res

) = targetContract.staticcall(abi.encodeWithSelector(targetFunction));

 return res;

}

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1ERC20Gateway.sol:L
75-L97

function getOutboundCalldata(

 address _token,

 address _from,

 address _to,

 uint256 _amount,

 bytes memory _data

) public view override returns (bytes memory outboundCalldata) {

 // TODO: cheaper to make static calls or save isDeployed to storage?

 bytes memory deployData = abi.encode(

 callStatic(_token, ERC20.name.selector),

 callStatic(_token, ERC20.symbol.selector),

 callStatic(_token, ERC20.decimals.selector)

);

 outboundCalldata = abi.encodeWithSelector(

 ITokenGateway.finalizeInboundTransfer.selector,

 _token,
 _from,

 _to,

 _amount,

 GatewayMessageHandler.encodeToL2GatewayMsg(deployData, _data)

);

L2 side

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 22/81

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/StandardArbERC20.sol:L36-L50

function bridgeInit(address _l1Address, bytes memory _data) public virtual {

 (bytes memory name_, bytes memory symbol_, bytes memory decimals_) = abi.de
 _data,

 (bytes, bytes, bytes)

);

 // what if decode reverts? shouldn't as this is encoded by L1 contract

 L2GatewayToken._initialize(

 BytesParserWithDefault.toString(name_, ""),

 BytesParserWithDefault.toString(symbol_, ""),

 BytesParserWithDefault.toUint8(decimals_, 18),

 msg.sender, // _l2Gateway,

 _l1Address // _l1Counterpart

);

}

Note that using the BytesParserWithDefault library appears to implement graceful
deploy data parsing. The system should avoid using this functionality since it
might be misused to create L1-L2 token discrepancies, which an attacker can
exploit.

Recommendation

Avoid assuming or falling back to token defaults. The source token should be
mimicked as closely as possible on the L2 chain. A token that fails to provide the
required information to be bridged to the L2 chain should not be accepted or
handled by an L2 “clone” token that replicates the L1 behavior as closely as
possible.

To enforce strict source token requirements, one could use the original IERC20

interface to retrieve the values and fail if the source token cannot provide them.

5.5 RollupAdmin Facet - Bad configuration can enable
malicious re-initialization Major

Description

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 23/81

AdminFacet methods are missing basic input validation. For example, an
erroneous call resetting confirmPeriodBlocks to 0 allows anyone to call
initialize() again, which could end up in an arbitrary code execution taking

over the Rollup contract. Note that Rollup owns Bridge , and Bridge stores the
system’s assets.

Examples

setConfirmPeriodBlocks allows to reset confirmPeriodBlocks to 0 which would
allow anyone to call initialize() again performing an arbitrary delegateCall

via userFacet.initialize which allows arbitrary code execution.

code/packages/arb-bridge-eth/contracts/rollup/facets/RollupAdmin.sol:L111-
L118

/**

 * @notice Set number of blocks until a node is considered confirmed

 * @param newConfirmPeriod new number of blocks

 */

function setConfirmPeriodBlocks(uint256 newConfirmPeriod) external override {

 confirmPeriodBlocks = newConfirmPeriod;

 emit OwnerFunctionCalled(9);

}

code/packages/arb-bridge-eth/contracts/rollup/Rollup.sol:L85-L88

function isInit() internal view returns (bool) {

 return confirmPeriodBlocks != 0;

}

setStakedToken does not take the input validation requirements of UserFacet
into account (stakedToken must be 0x0 for EthUserFacet, must not be 0x0 for
Erc20UserFacet). May allow anyone to call initialize on Erc20UserFacet if
stakedToken is reset to 0x0 .

code/packages/arb-bridge-eth/contracts/rollup/facets/RollupAdmin.sol:L153-
L156

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 24/81

function setStakeToken(address newStakeToken) external override {

 stakeToken = newStakeToken;

 emit OwnerFunctionCalled(13);

}

Recommendation

Additional requires should be added to safeguard against potential
misconfiguration that will practically reset the contract’s initialization.

5.6 Outbox - unsafe downcast Medium

Description

When Outbox.executeTransaction is called, in the context of Outbox.executeBridgeCall ,
certain “execution context variables” are preserved and exposed to a potential
callee. However, the preserved data types are smaller than the types of the
original value, which may be unsafe as it can lead to an integer type value
wrapping (e.g. uint256 -> uint128). In such a case, the callee might be presented
with inaccurate information about the execution context.

Examples

At least batchNum can be an arbitrary uint256. Therefore, downcasting it to
uint128 may be unsafe and lead to an integer value wrap.

code/packages/arb-bridge-eth/contracts/bridge/Outbox.sol:L179-L187

context = L2ToL1Context({

 sender: l2Sender,

 l2Block: uint128(l2Block),

 l1Block: uint128(l1Block),

 timestamp: uint128(l2Timestamp),

 batchNum: uint128(batchNum),

 outputId: outputId

});

code/packages/arb-bridge-eth/contracts/bridge/Outbox.sol:L49-L49

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 25/81

mapping(uint256 => OutboxEntry) public outboxEntries;

code/packages/arb-bridge-eth/contracts/bridge/Outbox.sol:L115-L119

require(data.length == 97, "BAD_LENGTH");

uint256 batchNum = data.toUint(1);

// Ensure no outbox entry already exists w/ batch number

require(!outboxEntryExists(batchNum), "ENTRY_ALREADY_EXISTS");

OldOutbox:

code/packages/arb-bridge-
eth/contracts/bridge/Old_Outbox/OldOutbox.sol:L164-L169

_sender = l2Sender;

_l2Block = uint128(l2Block);

_l1Block = uint128(l1Block);

_timestamp = uint128(l2Timestamp);

Recommendation

We recommend using safe casts or preserving the type of the original value.

5.7 Inconsistent bridge security assurances Medium

Description

According to the developer team, the token bridge should give users the
assurance that their L2 tokens will always be redeemable to L1. As a result of this
requirement, anyone can bypass the L2 router by calling the respective L2
gateway’s outboundTransfer() function directly.

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2ArbitrumGateway.sol
:L134-L174

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 26/81

function outboundTransfer(

 address _l1Token,

 address _to,

 uint256 _amount,

 uint256, /* _maxGas */

 uint256, /* _gasPriceBid */

 bytes calldata _data

) public payable virtual override returns (bytes memory res) {

 // This function is set as public and virtual so that subclasses can override
 // it and add custom validation for callers (ie only whitelisted users)

 // the function is marked as payable to conform to the inheritance setup

 // this particular code path shouldn't have a msg.value > 0

 // TODO: remove this invariant for execution markets

 require(msg.value == 0, "NO_VALUE");

 address _from;

 bytes memory _extraData;

 {

 if (isRouter(msg.sender)) {

 (_from, _extraData) = GatewayMessageHandler.parseFromRouterToGatewa
 } else {

 _from = msg.sender;

 _extraData = _data;

 }

 }

 // the inboundEscrowAndCall functionality has been disabled, so no data is al
 require(_extraData.length == 0, "EXTRA_DATA_DISABLED");

 uint256 id;

 {

 address l2Token = calculateL2TokenAddress(_l1Token);

 require(l2Token.isContract(), "TOKEN_NOT_DEPLOYED");

 require(IArbToken(l2Token).l1Address() == _l1Token, "NOT_EXPECTED_L1_TO

 _amount = outboundEscrowTransfer(l2Token, _from, _amount);

 id = triggerWithdrawal(_l1Token, _from, _to, _amount, _extraData);

 }

 return abi.encode(id);

}

While this effectively undermines the L2 router’s authority over
configured/allowed gateways, it prevents a gateway from being rendered

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 27/81

unusable once it’s not listed on the L1 router anymore, and thus prevents user
tokens on L2 from getting stuck.

While this requirement holds for ERC20 Gateways, it does not for the custom
token gateway. An administrator can register custom L1-L2 token pairs using
L2CustomGateway.registerTokenFromL1 or L1CustomGateway.forceRegisterTokenToL2 . Both

functions effectively accept a list of L1-L2 token address mappings.

This mapping can be overridden by the admin at any time
(https://github.com/ConsenSys/arbitrum-audit-2021-10/issues/18). If an
administrator updates an existing L1-L2 token mapping to one pointing to an
invalid L2 address, i.e. address is not a contract, the L2 token will be rendered
unbridgeable from L2 to L1 until that (mis-)configuration is reversed.

Examples

L1 -> L2 token registration:

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1CustomGateway.sol:
L153-L175

https://github.com/ConsenSys/arbitrum-audit-2021-10/issues/18)

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 28/81

function forceRegisterTokenToL2(

 address[] calldata _l1Addresses,

 address[] calldata _l2Addresses,

 uint256 _maxGas,

 uint256 _gasPriceBid,

 uint256 _maxSubmissionCost
) external payable returns (uint256) {

 require(msg.sender == owner, "ONLY_OWNER");

 require(_l1Addresses.length == _l2Addresses.length, "INVALID_LENGTHS");

 for (uint256 i = 0; i < _l1Addresses.length; i++) {

 // here we assume the owner checked both addresses offchain before force
 // require(address(_l1Addresses[i]).isContract(), "MUST_BE_CONTRACT");

 l1ToL2Token[_l1Addresses[i]] = _l2Addresses[i];

 emit TokenSet(_l1Addresses[i], _l2Addresses[i]);

 }

 bytes memory _data = abi.encodeWithSelector(

 L2CustomGateway.registerTokenFromL1.selector,

 _l1Addresses,

 _l2Addresses

);

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2CustomGateway.sol:
L83-L93

function registerTokenFromL1(address[] calldata l1Address, address[] calldata l
 external

 onlyCounterpartGateway

{

 // we assume both arrays are the same length, safe since its encoded by the L
 for (uint256 i = 0; i < l1Address.length; i++) {

 // here we don't check if l2Address is a contract and instead deal with
 // in `handleNoContract` this way we keep the l1 and l2 address oracles i
 l1ToL2Token[l1Address[i]] = l2Address[i];

 emit TokenSet(l1Address[i], l2Address[i]);

 }

If the L2 address is set to a non-contract, the outboundTransfer call reverts. As a
result, the custom token cannot be bridged to L1 anymore. This can be caused

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 29/81

by an admin updating the mapping at any time:

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2ArbitrumGateway.sol
:L165-L168

address l2Token = calculateL2TokenAddress(_l1Token);

require(l2Token.isContract(), "TOKEN_NOT_DEPLOYED");

require(IArbToken(l2Token).l1Address() == _l1Token, "NOT_EXPECTED_L1_TOKEN");

Recommendation

While ERC20 tokens can always be redeemed to L1, this does not seem to be the
case with custom tokens once their internal L1-L2 token mapping is updated by
an admin. Consider disallowing updates for existing L1-L2 custom token
mappings. The bridge’s assurances on tokens transfers and recovery should be
clearly communicated to the users.

5.8 Lacking separation of concerns between Router and
Gateway functionality Medium

Description

The GatewayRouter implements the TokenGateway interface. However, the domains
of a router and a gateway are different and should not overlap. Consequentially,
the GatewayRouter should implement a separate router interface with different
interface naming, while the gateways adhere to the TokenGateway interface.

As the interface concerns are not cleanly separated at the moment, some router
functions always revert.

Examples

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/libraries/gateway/GatewayRouter.sol:L68-
L76

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 30/81

function finalizeInboundTransfer(

 address, /* _token */

 address, /* _from */

 address, /* _to */

 uint256, /* _amount */

 bytes calldata /* _data */

) external payable virtual override {

 revert("ONLY_OUTBOUND_ROUTER");

}

Recommendation

Cleanly separate gateway and router interfaces, and refactor router- and
gateway-related functions to avoid unnecessary reverts.

5.9 Unpredictable behavior due to admin front running or
general bad timing Medium

Description

In several cases, privileged accounts can update or upgrade things in the
system without warning. Unannounced upgrades have the potential to violate
the system’s security goals.

Specifically, privileged roles could use front-running to make malicious changes
just ahead of configuration-changing transactions, or random adverse effects
could occur due to the unfortunate timing of changes.

Some instances of this issue are more significant than others, but in general,
users of the system should have assurances about the behavior of the action
they’re about to take.

Examples

Rollup (most settings, significantly changing facets)

RollupAdminFacet

Upgradeable proxies

TokenBridge - CustomTokenGateway - token mappings can be
overridden/unset/set to invalid L2 addresses at any time by providing an L2

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 31/81

token address of address(0x0) , resulting in the L2 token becoming
unbridgeable.

Recommendation

The underlying issue is that users of the system can’t be sure of a function call’s
behavior. Due to potential configuration changes, the behavior can change at
any time.

Consider giving users a time-locked notice of changes in advance. The first step
merely tells users that the system will execute a particular change. The second
step commits that change after a reasonable waiting period.

5.10 Missing deployment consistency checks Medium

Description

The deployment scripts contained in arb-bridge-eth and arb-bridge-peripherals do
not perform consistency checks after deployed target contracts. If a sanity
check fails on a new deployment, the scripts should cancel the deployment
process and raise an error to inform the deployer about potentially malicious
front-running behavior.

Recommendation

Especially when non-constructor initialization functions are used in the
deployment flow, we recommend performing basic sanity checks to assert that
no front-running attacks have been completed between contract deployment
and their initialization.

5.11 Missing constructors and manual initialization Medium

Description

Various smart contracts in the system require custom initialization functions to
be called. The point in time when these calls happen is up to the deploying
address. While some initialization functions have authorization or property-
based checks to avoid duplicate or malicious initialization, others do not.

Examples

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 32/81

code/packages/arb-bridge-eth/contracts/challenge/Challenge.sol:L99-L110

function initializeChallenge(

 IOneStepProof[] calldata _executors,

 address _resultReceiver,

 bytes32 _executionHash,

 uint256 _maxMessageCount,

 address _asserter,

 address _challenger,

 uint256 _asserterTimeLeft,
 uint256 _challengerTimeLeft,

 ISequencerInbox _sequencerBridge,

 IBridge _delayedBridge

) external override {

Recommendation

It is recommended to use constructors wherever possible to initialize contracts
during deploy-time immediately. If other initialization functions are used, we
recommend a standardized, top-level initialized boolean, set to true on the
first deployment and used to prevent future initialization.

Using constructors and locked-down initialization functions will significantly
reduce the probability of developer errors and the possibility of attackers re-
initializing vital system components.

5.12 Rollup - A reentrant StakeToken may allow zero-fee flash-
loans Minor

Description

The ERC20RollupUserFacet allows users to stake and unstake in one transaction. In
case a reentrant StakeToken is configured (i.e., ERC-777 or equivalent), a user can
take a zero-fee flash loan by performing the following steps:

1. Call newStake() and provide the minimum stake required (e.g., 1000 TOK).

2. When newStake() pulls in the token via token.transferFrom() , an ERC-777 token
executes callback from.tokensToSend() before the token is actually transferred.
The new stake, however, is already added to the internal accounting.

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 33/81

3. In the reentrant from.tokensToSend() callback, the user recursively calls
Rollup.addToDeposit() to inflate Rollup ’s internal accounting even more. No

tokens have been transferred yet.

4. Repeat until the desired amount (internal accounting) is reached (max.
token.balanceOf(Rollup)).

5. In the next from.tokensToSend() , first call Rollup.returnOldDeposit() to move
inflated stake to withdrawableAmount and then withdrawStakerFunds() to pull
tokens to the user’s address. (Note: No token has been transferred from user
to Rollup yet.)

6. withdrawStakerFunds() calls token.transfer() , which triggers the
recipient.tokensReceived() callback (ERC-777).

7. In recipient.tokensReceived() , perform the flash loan target activity (e.g., DEX
operation; bypass stake requirement and confirm block in one tx; …) and
make sure the loaned amount is returned to the user right after. That is
required to pay back the loan.

8. Let the recursive calls unwrap with the ERC-777 internal token transfers
taking place. This will return the loaned amount to Rollup and finally
synchronize the external with the internal accounting.

Examples

code/packages/arb-bridge-eth/contracts/rollup/facets/RollupUser.sol:L617-
L624

function newStake(uint256 tokenAmount) external onlyValidator whenNotPaused {

 _newStake(tokenAmount);

 require(

 IERC20(stakeToken).transferFrom(msg.sender, address(this), tokenAmount)
 "TRANSFER_FAIL"

);

}

code/packages/arb-bridge-eth/contracts/rollup/facets/RollupUser.sol:L629-
L640

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 34/81

 */

function addToDeposit(address stakerAddress, uint256 tokenAmount)

 external

 onlyValidator

 whenNotPaused

{

 _addToDeposit(stakerAddress, tokenAmount);

 require(

 IERC20(stakeToken).transferFrom(msg.sender, address(this), tokenAmount)
 "TRANSFER_FAIL"

);

}

code/packages/arb-bridge-eth/contracts/rollup/facets/RollupUser.sol:L646-
L657

function withdrawStakerFunds(address payable destination)

 external

 override

 onlyValidator

 whenNotPaused

 returns (uint256)

{

 uint256 amount = withdrawFunds(msg.sender);

 // This is safe because it occurs after all checks and effects

 require(IERC20(stakeToken).transfer(destination, amount), "TRANSFER_FAILED"
 return amount;

}

Recommendation

Add a reentrancy guard to methods potentially handling tokens with callbacks.
Alternatively, require a stake to be locked for at least one block.

5.13 Outdated Solidity version Minor

Description

Most of the codebase uses the Solidity version pragma ^0.6.11 and the compiler
version 0.6.11. Apart from the fact that there’s a v0.6.12 release, the v0.6 series is
outdated when writing this report, and there are known bugs.

https://docs.soliditylang.org/en/latest/bugs.html

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 35/81

Recommendation

We recommend an upgrade to the latest release of the v0.8 series of the Solidity
compiler. However, this means the entire codebase has to be reviewed and
adapted to the newer Solidity version. One example of this is given in issue 6.11.

5.14 (Old)Outbox - handleOutgoingMessage message
validation Minor

Description

In Outbox and OutboxEntry.root of bytes32(0x0) indicates that the outbox for a
specific batchNum is not yet set. While there is no proof that every output of
common hash functions is reachable for some input and the Merkle root is
based on repeated Keccak operations, a Merkle root of 0x00...00 can
theoretically occur. Consequentially, using the zero-value as an indicator that
the OutboxEntry is unset may become problematic unless it is guaranteed that a
root of bytes32(0) will not occur.

OldOutbox enforces root to be non-zero (see OutboxEntry.initialize) while new
Outbox silently accepts it (which theoretically allows the batchNum to be

overridden again).

From the OldOutbox implementation, we assume that batchNum is related to the
outboxIndex in the outboxes array as otherwise, the outboxEntryExists check would

not work. This check, however, is not enforced in handleOutgoingMessage , and
instead, the batchNum is dropped in favor of the outboxIndex . The original batchNum

in both the new Outbox and the OldOutbox is not enforced to be strictly
monotonically increasing. The new Outbox indexes are based on the batchNum

while the OldOutbox uses the outboxIndex (outboxes array length).

Whether the batchNum sequence and Merkle root rules are enforced in the
component that generates the message and can be challenged might be safe to
omit these checks. In general, however, the stricter the message handling is, the
less attack surface is available, which might positively contribute to the security
posture of the system (if a message is invalid according to the system’s rules,
the block is likely malicious, and its output should not be spendable)

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 36/81

Examples

Outbox zero Merkle root

code/packages/arb-bridge-eth/contracts/bridge/Outbox.sol:L112-L131

function handleOutgoingMessage(bytes memory data) private {

 // Otherwise we have an unsupported message type and we skip the message

 if (data[0] == MSG_ROOT) {

 require(data.length == 97, "BAD_LENGTH");

 uint256 batchNum = data.toUint(1);

 // Ensure no outbox entry already exists w/ batch number

 require(!outboxEntryExists(batchNum), "ENTRY_ALREADY_EXISTS");

 // This is the total number of msgs included in the root, it can be used
 // detect when all msgs were executed against a root.

 // It currently isn't stored, but instead emitted in an event for utility
 uint256 numInBatch = data.toUint(33);

 bytes32 outputRoot = data.toBytes32(65);

 OutboxEntry memory newOutboxEntry = OutboxEntry(outputRoot);

 outboxEntries[batchNum] = newOutboxEntry;

 // keeping redundant batchnum in event (batchnum and old outboxindex fiel
 emit OutboxEntryCreated(batchNum, batchNum, outputRoot, numInBatch);

 }

}

code/packages/arb-bridge-eth/contracts/bridge/Outbox.sol:L272-L274

function outboxEntryExists(uint256 batchNum) public view override returns (bool
 return outboxEntries[batchNum].root != bytes32(0);

}

OldOutbox unchecked batchNum

code/packages/arb-bridge-
eth/contracts/bridge/Old_Outbox/OldOutbox.sol:L106-L119

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 37/81

function handleOutgoingMessage(bytes memory data) private {

 // Otherwise we have an unsupported message type and we skip the message

 if (data[0] == MSG_ROOT) {

 require(data.length == 97, "BAD_LENGTH");

 uint256 batchNum = data.toUint(1);

 uint256 numInBatch = data.toUint(33);

 bytes32 outputRoot = data.toBytes32(65);

 address clone = address(new BeaconProxy(address(beacon), ""));

 OutboxEntry(clone).initialize(outputRoot, numInBatch);

 uint256 outboxIndex = outboxes.length;

 outboxes.push(OutboxEntry(clone));

 emit OutboxEntryCreated(batchNum, outboxIndex, outputRoot, numInBatch);
 }

duplicate Merkle roots should not be allowed

Recommendation

Require that outputRoot != bytes32(0) , both when generating the root and
decoding it in handleOutgoingMessage . Check batchNum to be strictly monotonically
increasing, highest seen batchNum < amountBatchesProcessed , duplicate batchNum ’s (
OldOutbox).

5.15 RollupUser - removeZombie() off-by-one comparison
check Minor

Description

The user-provided zombieNum argument cannot exceed the value of zombieCount()

(i.e. _zombies.length) as zombies are zero-indexed. Providing a
zombieNum == zombieCount() will always fail with an assertion consuming all gas in
zombieAddress() due to an out-of-bounds array access.

Examples

code/packages/arb-bridge-eth/contracts/rollup/facets/RollupUser.sol:L381-
L393

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 38/81

/**

 * @notice Remove the given zombie from nodes it is staked on, moving backwords f
 * @param zombieNum Index of the zombie to remove

 * @param maxNodes Maximum number of nodes to remove the zombie from (to limit th
 */

function removeZombie(uint256 zombieNum, uint256 maxNodes)

 external

 onlyValidator

 whenNotPaused

{

 require(zombieNum <= zombieCount(), "NO_SUCH_ZOMBIE");

 address zombieStakerAddress = zombieAddress(zombieNum);

 uint256 latestNodeStaked = zombieLatestStakedNode(zombieNum);

Recommendation

Change the comparison operator <= to strictly < .

5.16 Avoid ineffective calls as they may hide misconfiguration
Minor

Description

Ineffective calls that do not lead to state changes may indicate misconfiguration
and should be avoided as such. For example, if an admin calls
L1GatewayRouter.setGateways but does not provide any gateways, the call returns

successfully without changing the system’s state. When a cross-chain message
is emitted, most likely, no change is performed on the L2 side either. In some
cases, events will be emitted that may be picked up by third-party components,
which then perform actions on data that did not cause any state changes.

Examples

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1GatewayRouter.sol:L
97-L106

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 39/81

function _setGateways(

 address[] memory _token,

 address[] memory _gateway,

 uint256 _maxGas,

 uint256 _gasPriceBid,

 uint256 _maxSubmissionCost,

 address _creditBackAddress
) internal returns (uint256) {

 require(_token.length == _gateway.length, "WRONG_LENGTH");

code/packages/arb-bridge-
eth/contracts/rollup/facets/RollupAdmin.sol:L238-L254

function forceResolveChallenge(address[] memory stakerA, address[] memory stake
 external

 override

 whenPaused

{

 require(stakerA.length == stakerB.length, "WRONG_LENGTH");

 for (uint256 i = 0; i < stakerA.length; i++) {

 address chall = inChallenge(stakerA[i], stakerB[i]);

 require(address(0) != chall, "NOT_IN_CHALL");

 clearChallenge(stakerA[i]);

 clearChallenge(stakerB[i]);

 IChallenge(chall).clearChallenge();

 }

 emit OwnerFunctionCalled(21);

}

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1CustomGateway.sol:
L153-L162

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 40/81

function forceRegisterTokenToL2(

 address[] calldata _l1Addresses,

 address[] calldata _l2Addresses,

 uint256 _maxGas,

 uint256 _gasPriceBid,

 uint256 _maxSubmissionCost
) external payable returns (uint256) {

 require(msg.sender == owner, "ONLY_OWNER");

 require(_l1Addresses.length == _l2Addresses.length, "INVALID_LENGTHS");

code/packages/arb-bridge-eth/contracts/rollup/facets/RollupAdmin.sol:L84-
L86

function setValidator(address[] memory _validator, bool[] memory _val) external
 require(_validator.length == _val.length, "WRONG_LENGTH");

There might be more similar cases in the codebase.

Recommendation

Avoid ineffective calls unless there is a good reason to allow them, such as
NOP’s for functions not supposed to revert. An error should be returned for
external interfaces consumed by users or administrators when the performed
call seems to have no state-changing effect.

For the specific cases listed above, we recommend checking whether
_token.length == _gateway.length && token.length > 0 .

5.17 L2GatewayRouter - L1-to-L2 interface inconsistency Minor

Description

The L2GatewayRouter.setGateway function accepts multiple gateway addresses, while
the equivalent L1GatewayRouter.setGateway function only accepts a single address.

Examples

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 41/81

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2GatewayRouter.sol:L
43-L55

function setGateway(address[] memory _l1Token, address[] memory _gateway)

 external

 onlyCounterpartGateway

{

 // counterpart gateway (L1 router) should never allow wrong lengths

 assert(_l1Token.length == _gateway.length);

 for (uint256 i = 0; i < _l1Token.length; i++) {

 l1TokenToGateway[_l1Token[i]] = _gateway[i];

 emit GatewaySet(_l1Token[i], _gateway[i]);

 }

}

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1GatewayRouter.sol:L
153-L223

 */

function setGateway(

 address _gateway,

 uint256 _maxGas,

 uint256 _gasPriceBid,

 uint256 _maxSubmissionCost
) external payable returns (uint256) {

 return setGateway(_gateway, _maxGas, _gasPriceBid, _maxSubmissionCost, msg.
}

/**

 * @notice Allows L1 Token contract to trustlessly register its gateway.

 * param _gateway l1 gateway address

 * param _maxGas max gas for L2 retryable exrecution

 * param _gasPriceBid gas price for L2 retryable ticket

 * param _maxSubmissionCost base submission cost L2 retryable tick3et

 * param _creditBackAddress address for crediting back overpayment of _maxSubmiss
 * return Retryable ticket ID

 */

function setGateway(

 address, /* _gateway */

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 42/81

, g y
 uint256, /* _maxGas */

 uint256, /* _gasPriceBid */

 uint256, /* _maxSubmissionCost */

 address /* _creditBackAddress */

) public payable returns (uint256) {

 revert("SELF_REGISTRATION_DISABLED");

 /*

 require(

 ArbitrumEnabledToken(msg.sender).isArbitrumEnabled() == uint8(0xa4b1),

 "NOT_ARB_ENABLED"

);

 require(_gateway.isContract(), "NOT_TO_CONTRACT");

 address currGateway = l1TokenToGateway[msg.sender];

 if (currGateway != address(0)) {

 // if gateway is already set, don't allow it to set a different gateway

 require(currGateway == _gateway, "NO_UPDATE_TO_DIFFERENT_ADDR");

 }

 address[] memory _tokenArr = new address[](1);

 _tokenArr[0] = address(msg.sender);

 address[] memory _gatewayArr = new address[](1);

 _gatewayArr[0] = _gateway;

 return

 _setGateways(

 _tokenArr,

 _gatewayArr,

 _maxGas,

 _gasPriceBid,

 _maxSubmissionCost,

 _creditBackAddress

);

 */

}

function setGateways(

 address[] memory _token,

 address[] memory _gateway,

 uint256 _maxGas,

 uint256 _gasPriceBid,

 uint256 _maxSubmissionCost
) external payable onlyOwner returns (uint256) {

 // it is assumed that token and gateway are both contracts

 // require(_token[i].isContract() && _gateway[i].isContract(), "NOT_CONTRACT

return

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 43/81

 return
 _setGateways(_token, _gateway, _maxGas, _gasPriceBid, _maxSubmissionCos
}

Recommendation

We recommend providing a consistent L1-to-L2 interface to avoid confusion.
Additionally, L2GatewayRouter.setGateway should be renamed to setGateways .

5.18 L2GatewayRouter/L2ArbitrumGateway -
onlyCounterpartGateway() should only allow L2 aliased
addresses Minor

Description

According to the regular user-data-flow gateways communicate with their
counterparts through the bridge. However, the onlyCounterpartGateway() access
modifier allows both the L1 and the L2 counterpart address. As the transition
into the address-mapped L1-L2 integration has been completed, the L1 address
check has become redundant and might compromise the system’s security
properties.

Examples

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2GatewayRouter.sol:L
31-L39

modifier onlyCounterpartGateway() override {

 require(

 msg.sender == counterpartGateway ||

 AddressAliasHelper.undoL1ToL2Alias(msg.sender) == counterpartGatewa
 "ONLY_COUNTERPART_GATEWAY"

);

 _;

}

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 44/81

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2ArbitrumGateway.sol
:L56-L63

modifier onlyCounterpartGateway() override {

 require(

 msg.sender == counterpartGateway ||

 AddressAliasHelper.undoL1ToL2Alias(msg.sender) == counterpartGatewa
 "ONLY_COUNTERPART_GATEWAY"

);

 _;

}

Recommendation

Remove msg.sender == counterpartGateway in favor of the L2 aliased address.

5.19 ERC20Gateway / BeaconProxyFactory - is not a proxy or
initialize may be unnecessary (pot. front-run) Minor

Description

BeaconProxyFactory has an initialize function that takes an erc20Beacon address as
an initialization parameter. That erc20Beacon contract (ERC20 token
implementation on L2) is usually created before the BeaconProxyFactory is
deployed. Hence, the initialize function may be unnecessary and can be
switched out for a simple constructor initializing the parameter.

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/libraries/ClonableBeaconProxy.sol:L27-
L31

function initialize(address _beacon) external {

 require(_beacon != address(0), "INVALID_BEACON");

 require(beacon == address(0), "ALREADY_INIT");

 beacon = _beacon;

}

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 45/81

code/packages/arb-bridge-peripherals/scripts/deploy_token_bridge_l1.ts:L94-
L102

const erc20Beacon = await UpgradeableBeacon.deploy(standardArbERC20.address)

await erc20Beacon.deployed()

console.log(`erc20 beacon at ${erc20Beacon.address}`)

const BeaconProxyFactory = (

 await ethers.getContractFactory('BeaconProxyFactory')
).connect(l2Signer)

const beaconProxyFactory = await BeaconProxyFactory.deploy()

await beaconProxyFactory.deployed()

Since the create2 factory contract does not appear to be a proxy at all
(https://arbiscan.io/bytecode-decompiler?
a=0x3fe38087a94903a9d946fa1915e1772fe611000f), developers cannot switch
it out without invalidating all L2 token addresses.

Recommendation

We recommend checking whether the BeaconProxyFactory was meant to be a
proxy instead of a concrete deployment, as hinted by the initialize() function.
If that’s not the case, consider removing the initialize function in favor of a
constructor call setting initial parameters instead of preventing other actions
from front-run the BeaconProxyFactory deployment/initialization procedure.

This issue is connected to issue 5.11.

5.20 aeWETH - Deviations from WETH9 interface and
standard Minor

Description

L2 aeWETH to L1 IWETH9 token interface might be unexpected for consumers
expecting IWETH9 functionality and events.

Examples

https://arbiscan.io/bytecode-decompiler?a=0x3fe38087a94903a9d946fa1915e1772fe611000f),

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 46/81

aeWETH emits Transfer events for withdraw/deposit events while WETH9 emits
Withdrawal and Deposit

src/weth9.sol:L25-L26

event Deposit(address indexed dst, uint wad);

event Withdrawal(address indexed src, uint wad);

non-standard interfaces depositTo and withdrawTo allow to deposit to and
withdraw to arbitrary accounts.

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/libraries/aeWETH.sol:L58-L67

function depositTo(address account) public payable {

 _mint(account, msg.value);

}

function withdrawTo(address account, uint256 amount) public {

 _burn(msg.sender, amount);

 (bool success,) = account.call{ value: amount }("");

 require(success, "FAIL_TRANSFER");

}

Recommendation

Keep the L2 WETH interfaces and events as close as possible to the original L1
WETH contract. Consider restricting withdrawTo and depositTo internal if they are
not meant to be called from an external source.

5.21 L1ArbitrumGateway - Unreachable Code Minor

Description

require(isRouter(msg.sender), "NOT_FROM_ROUTER"); enforces that msg.sender is a router,
therefore, the else branch in the following conditional statement is never taken.

Note: the two function calls isRouter and super.isRouter are equivalent.

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 47/81

Examples

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1ArbitrumGateway.so
l:L173-L206

/**

 * @notice Deposit ERC20 token from Ethereum into Arbitrum. If L2 side hasn't bee
 * @param _l1Token L1 address of ERC20

 * @param _to account to be credited with the tokens in the L2 (can be the user's
 * @param _amount Token Amount

 * @param _maxGas Max gas deducted from user's L2 balance to cover L2 execution

 * @param _gasPriceBid Gas price for L2 execution

 * @param _data encoded data from router and user

 * @return res abi encoded inbox sequence number

 */

// * @param maxSubmissionCost Max gas deducted from user's L2 balance to cover b
function outboundTransfer(

 address _l1Token,

 address _to,

 uint256 _amount,

 uint256 _maxGas,

 uint256 _gasPriceBid,

 bytes calldata _data

) public payable virtual override returns (bytes memory res) {

 require(isRouter(msg.sender), "NOT_FROM_ROUTER");

 // This function is set as public and virtual so that subclasses can override
 // it and add custom validation for callers (ie only whitelisted users)

 address _from;

 uint256 seqNum;

 bytes memory extraData;

 {

 uint256 _maxSubmissionCost;
 if (super.isRouter(msg.sender)) {

 // router encoded

 (_from, extraData) = GatewayMessageHandler.parseFromRouterToGateway
 } else {

 _from = msg.sender;

 extraData = _data;

 }

Recommendation

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 48/81

The relevant code is probably from an earlier iteration and should be removed.

5.22 Uninitialized proxy templates/implementations Minor

Description

Proxy templates/implementations are not always automatically initialized, or
ACL controlled. Other participants may be able to claim the contracts even
though they are not officially being used directly to mislead others which can
cause reputational damage.

Examples

The delayed inbox proxy at 0x4Dbd4fc535Ac27206064B68FfCf827b0A60BAB3f is initialized,
however the implementation contract at 0x048cc108763de75E080Ad717bD284003aa49eA15 is
not (bridge == address(0)).

Similarly, the L1ERC20Gateway proxy at 0xa3A7B6F88361F48403514059F1F16C8E78d60EeC is
initialized, but its implementation at 0xd710c475216999184DB1737aAd197fC855255AD7 is not
(counterpartGateway == address(0)).

Recommendation

Add a constructor to relevant contracts that automatically initializes the
implementations on deployment. We recommend reviewing all production
deployments to ensure the problem does not affect any more components.

5.23 Use the precise interface types instead of address
where possible Minor

Description

For clarity and to get more out of the Solidity type checker, it’s generally
preferred to use a specific contract interface type for variables rather than the
generic address . Consider declaring function arguments with the most specific
type available instead of address ; only downcast to a “less safe” address when
required.

Examples

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 49/81

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2ERC20Gateway.sol:L
28-L37

address public beaconProxyFactory;

function initialize(

 address _l1Counterpart,

 address _router,

 address _beaconProxyFactory

) public {

 L2ArbitrumGateway._initialize(_l1Counterpart, _router);

 require(_beaconProxyFactory != address(0), "INVALID_BEACON");

 beaconProxyFactory = _beaconProxyFactory;

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1ArbitrumGateway.so
l:L234-L245

function outboundEscrowTransfer(

 address _l1Token,

 address _from,

 uint256 _amount

) internal virtual returns (uint256 amountReceived) {

 // this method is virtual since different subclasses can handle escrow differ
 // user funds are escrowed on the gateway using this function

 uint256 prevBalance = IERC20(_l1Token).balanceOf(address(this));

 IERC20(_l1Token).safeTransferFrom(_from, address(this), _amount);

 uint256 postBalance = IERC20(_l1Token).balanceOf(address(this));

 return SafeMath.sub(postBalance, prevBalance);

}

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1GatewayRouter.sol:L
99-L99

address[] memory _gateway,

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 50/81

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/L1ArbitrumMessenger.sol:L83-
L86

function getBridge(address _inbox) internal view virtual returns (IBridge) {

 return IInbox(_inbox).bridge();
}

double cast of template and template is address instead of best type
Validator :

code/packages/arb-bridge-
eth/contracts/validator/ValidatorWalletCreator.sol:L46-L50

function createWallet() external returns (address) {

 ProxyAdmin admin = new ProxyAdmin();

 address proxy = address(

 new TransparentUpgradeableProxy(address(template), address(admin), "")

);

Recommendation

Where possible, use a specific contract type instead of an address .

5.24 Clean up unused imports Minor

Description

In various places, source units have been imported but not referenced in the
respective smart contract.

Examples

code/packages/arb-bridge-eth/contracts/bridge/Bridge.sol:L21-L22

import "./Inbox.sol";

import "./Outbox.sol";

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 51/81

code/packages/arb-bridge-eth/contracts/bridge/Inbox.sol:L25-L25

import "./Messages.sol";

code/packages/arb-bridge-eth/contracts/bridge/Outbox.sol:L29-L30

import "@openzeppelin/contracts/proxy/BeaconProxy.sol";

import "@openzeppelin/contracts/proxy/UpgradeableBeacon.sol";

code/packages/arb-bridge-eth/contracts/bridge/SequencerInbox.sol:L25-
L25

import "../rollup/Rollup.sol";

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2ERC20Gateway.sol:L
22-L22

import "@openzeppelin/contracts/utils/Create2.sol";

code/packages/arb-bridge-eth/contracts/arch/IOneStepProof.sol:L21-L21

import "../bridge/interfaces/IBridge.sol";

code/packages/arb-bridge-eth/contracts/arch/OneStepProof.sol:L21

import "./IOneStepProof.sol";

code/packages/arb-bridge-eth/contracts/arch/OneStepProof2.sol:L47-L47

import "./IOneStepProof.sol";

code/packages/arb-bridge-eth/contracts/arch/OneStepProof2.sol:L50-L50

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 52/81

import "./Machine.sol";

IERC20 import should be in RollupUser :

code/packages/arb-bridge-eth/contracts/rollup/Rollup.sol:L24-L24

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

Recommendation

We recommend checking all imports and removing all unused and unnecessary
imports.

5.25 GasRefunder - gas refund can be maxed-out by zero-
padding calldata

Resolution

According to the client, this method is is configured to only be callable by
their Sequencer Node (isSequencer && isGasRefunder). The main reason to refund
gas this way is to diversify risk by not keeping all the funds in the sequencer
hot-wallet instead of keeping part of the funds in the gas refunded. The
Sequencer initially funds the gas refunded.

Description

SequencerInbox.addSequencerL2BatchFromOriginWithGasRefunder() refunds the gas that was
spent on calling the function. The refund is calculated as (1) the gas consumed
on the execution of the instructions (function bodies), (2) the amount of call
data provided, and (3) adding an extra gas margin. The maximum amount of gas
refunded (initially) is 2e6 * 120 gwei ^= 240000000000000000 wei ^= 0.24 ETH , that’s
around ~ 1000 USD at the time of this report.

code/packages/arb-bridge-eth/contracts/validator/GasRefunder.sol:L81-L89

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 53/81

 commonParams = CommonParameters({

 maxRefundeeBalance: 0, // no limit

 extraGasMargin: 4000, // 4k gas

 calldataCost: 12, // Between 4 for zero bytes and 16 for non-zero bytes

 maxGasTip: 2 gwei,

 maxGasCost: 120 gwei,

 maxSingleGasUsage: 2e6 // 2 million gas

 });

}

Calldata is refunded with 12 gas, even though zero-bytes might only consume
four gas. Consequently, appended zero-bytes are refunded 3x the caller’s actual
price on providing them with the transaction. Callers are therefore incentivized
to zero-pad their calls to max out the gas refund. The contracts function
dispatcher ignores the appended bytes. Hence, they provide no value to the
contract call, but they are refunded with 3x the actual price the caller has to pay
for providing them. In the worst case, depending on the current ethereum gas
price (i.e., current gas price is <= 120), this would allow a caller whitelisted for
gas refunds to get back up to 0.24 ETH every block while likely only spending a
fraction on the actual transaction.

Note that the maximum amount of calldata provided with a transaction is limited
by the block gas limit (at 10Mio ~ 625k bytes). Restrictions based on how much
was refunded (checking the refundee.balance) can easily be bypassed. However,
this method is authenticated and only allows configured refundees/sequencers
to receive a refund (RollupAdminFacet).

Examples

code/packages/arb-bridge-eth/contracts/bridge/SequencerInbox.sol:L183-
L216

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 54/81

function addSequencerL2BatchFromOriginWithGasRefunder(

 bytes calldata transactions,

 uint256[] calldata lengths,

 uint256[] calldata sectionsMetadata,

 bytes32 afterAcc,

 IGasRefunder gasRefunder

) external {

 // solhint-disable-next-line avoid-tx-origin

 require(msg.sender == tx.origin, "origin only");

 uint256 startGasLeft = gasleft();

 uint256 calldataSize;

 assembly {

 calldataSize := calldatasize()

 }

 uint256 startNum = messageCount;

 bytes32 beforeAcc = addSequencerL2BatchImpl(

 transactions,

 lengths,

 sectionsMetadata,

 afterAcc

);

 emit SequencerBatchDeliveredFromOrigin(

 startNum,

 beforeAcc,

 messageCount,

 afterAcc,

 inboxAccs.length - 1

);

 if (gasRefunder != IGasRefunder(0)) {

 gasRefunder.onGasSpent(msg.sender, startGasLeft - gasleft(), calldataSi
 }

Recommendation

Avoid refunding based on the provided calldatasize as this can easily be
manipulated by the caller.

6 Recommendations

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 55/81

6.1 Consider using a two-step ownership transfer

Description

To reduce the risk of accidentally losing access to the ownership/admin roles,
we recommend implementing a two-step ownership transfer by first offering the
role to a different account and having the grantee accept that role.

code/packages/arb-bridge-eth/contracts/libraries/Whitelist.sol:L56-L59

function setOwner(address newOwner) external onlyOwner {

 owner = newOwner;

 emit OwnerUpdated(newOwner);

}

code/packages/arb-bridge-eth/contracts/rollup/facets/RollupAdmin.sol:L97-
L100

function setOwner(address newOwner) external override {

 owner = newOwner;

 emit OwnerFunctionCalled(7);

}

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1GatewayRouter.sol:L
91-L95

function setOwner(address newOwner) external onlyOwner {

 require(newOwner != address(0), "INVALID_OWNER");

 // set newOwner to address(1) to disable owner and keep `initialize` safe

 owner = newOwner;

}

6.2 ERC20Gateway - Every bridge token transfer carries L2
token details

Description

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 56/81

Bridge token transfers via the ERC20Gateway always carry L2 token deployment
details (name, symbol, decimals) in L1-to-L2 messages even though they are
only used once on the L2 side (unless that L2 token is self-destructed).

Given that this information is encoded as
abi.encode(bytes memory, bytes memory, bytes memory) , this may add significant size to

L1-to-L2 messages. Furthermore, the decimals on the L1 side are packed as
bytes memory instead of uint8 in L1-to-L2 messages (consuming more size).

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1ERC20Gateway.sol:L
75-L98

function getOutboundCalldata(

 address _token,

 address _from,

 address _to,

 uint256 _amount,

 bytes memory _data

) public view override returns (bytes memory outboundCalldata) {

 // TODO: cheaper to make static calls or save isDeployed to storage?

 bytes memory deployData = abi.encode(

 callStatic(_token, ERC20.name.selector),

 callStatic(_token, ERC20.symbol.selector),

 callStatic(_token, ERC20.decimals.selector)

);

 outboundCalldata = abi.encodeWithSelector(

 ITokenGateway.finalizeInboundTransfer.selector,

 _token,
 _from,

 _to,

 _amount,

 GatewayMessageHandler.encodeToL2GatewayMsg(deployData, _data)

);

 return outboundCalldata;

Consider reducing message size (and therefore gas required) by finding a way
to force a deployment/initialization on the first call, only removing the necessity

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 57/81

to provide deploy init data with every call (optimizing for the 99% of calls that do
not need that data).

6.3 aeERC20 - Optimization: set initialized=true instead
of calling the modifier

Description

Directly setting initialized = true is more efficient than calling the modifier
initialized from the constructor, as this would cost at least two state variables

and additional computation.

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/libraries/aeERC20.sol:L30-L33

constructor() public initializer {

 // this is expected to be used as the logic contract behind a proxy

 // override the constructor if you don't wish to use the initialize method

}

6.4 Contract file system layout, source-unit structure,
naming

Description

The project layout, source-unit structure, and naming conventions diverge from
best practices in smart contract development.

Recommendations

We recommend the following actions to clean up the code base and make it
more maintainable:

Developers should keep contract interface declarations separately from
contract implementations, e.g., in an interfaces subfolder.

All interfaces and source units should adhere to a strict naming scheme
I<name> :

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 58/81

code/packages/arb-bridge-peripherals/contracts/rpc-
utils/RetryableTicketCreator.sol:L5-L5

interface RetryableTicketCreator {

If a contract/interface already exists, no sub-interfaces should be derived
from it.

Each source unit should only contain a single contract, e.g., Rollup.sol .

Revise stale contract names that are derived from previous pattern usage.
E.g., contracts are prefixed with Clonable even though it does not adhere to
the Clonable pattern used in other places of the codebase.

Instead of undescriptive integers, Enums should be used:

code/packages/arb-bridge-eth/contracts/rollup/facets/RollupAdmin.sol:L26-
L26

emit OwnerFunctionCalled(0);

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/libraries/ClonableBeaconProxy.sol:L8-L21

interface ProxySetter {

 function beacon() external view returns (address);

}

contract ClonableBeaconProxy is BeaconProxy {

 constructor() public BeaconProxy(ProxySetter(msg.sender).beacon(), "") {}

}

contract BeaconProxyFactory is ProxySetter {

 bytes32 public constant cloneableProxyHash = keccak256(type(ClonableBeaconP

 /**

 * @notice utility function used in ClonableBeaconProxy.

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 59/81

Contracts from external sources should be moved to a separate directory,
e.g. TransferAndCallToken .

Consider grouping public interfaces and internal/private interfaces
together. E.g., public interfaces first, private/internal afterward.

The contract should define modifiers at the top. They should not mix with
public/private functions:

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1GatewayRouter.sol:L
247-L251

modifier onlyCounterpartGateway() override {

 // don't expect messages from L2 router

 revert("ONLY_COUNTERPART_GATEWAY");

 _;

}

6.5 Untangle the complex inheritance structure

Description

The system’s core and peripheral contracts have a complex inheritance
structure with various functions being overridden and called across the
hierarchy. Consequentially, it becomes hard to trace the business logic flow
through the system and anticipate side effects and potentially unwanted state
changes.

Examples

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 60/81

StandardArbERC20

 ↖ Cloneable

 ↖ ICloneable

 ↖ L2GatewayToken

 ↖ IArbToken

 ↖ aeERC20
 ↖ TransferAndCallToken

 ↖ ITransferAndCall

 ↖ ERC20PermitUpgradeable

 ↖ EIP712Upgradeable

 ↖ IERC20PermitUpgradeable

 ↖ ERC20Upgradeable

 ↖ IERC20Upgradeable

 ↖ ContextUpgradeable

 ↖ Initializable

Recommendation

Consider revising the inheritance structure and separation of the system’s smart
contracts to reflect the use cases better while maintaining a clean separation of
concerns. Not only will a simplified hierarchy reduce the potential for errors later
on, but it will also increase maintainability and readability, which can help speed
up the onboarding process for new developers.

6.6 Inconsistent proxy initialization naming scheme

Description

StandardArbERC20.bridgeInit() is the default initialization method for the proxy
contract. Consider renaming it to initialize() to clearly communicate this fact.

Note that the implementation is protected from initializing deep down in
aeERC20.constructor via the initializer modifier.

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/StandardArbERC20.sol:L36-L47

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 61/81

function bridgeInit(address _l1Address, bytes memory _data) public virtual {

 (bytes memory name_, bytes memory symbol_, bytes memory decimals_) = abi.de
 _data,

 (bytes, bytes, bytes)

);

 // what if decode reverts? shouldn't as this is encoded by L1 contract

 L2GatewayToken._initialize(

 BytesParserWithDefault.toString(name_, ""),

 BytesParserWithDefault.toString(symbol_, ""),

 BytesParserWithDefault.toUint8(decimals_, 18),

 msg.sender, // _l2Gateway,

Comparably, aeWETH initialization is named initialize :

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/libraries/aeWETH.sol:L25-L34

contract aeWETH is L2GatewayToken, IWETH9 {

 function initialize(

 string memory name_,

 string memory symbol_,

 uint8 decimals_,

 address l2Gateway_,

 address l1Address_

) external {

 L2GatewayToken._initialize(name_, symbol_, decimals_, l2Gateway_, l1Add
 }

6.7 TransferAndCallToken - emits two Transfer() events

Description

The L2 tokens implementing TransferAndCallToken are emitting two Transfer()

events. First the ERC20Upgradeable.Transfer(msgSender(), to, value) and then the
TransferAndCallToken.Transfer(msg.sender, to, value, data) event. No event is emitted to

indicate that the external call has actually been executed.

Examples

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 62/81

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/libraries/TransferAndCallToken.sol:L19-
L30

function transferAndCall(
 address _to,

 uint256 _value,

 bytes memory _data

) public virtual override returns (bool success) {

 super.transfer(_to, _value);

 emit Transfer(msg.sender, _to, _value, _data);

 if (isContract(_to)) {

 contractFallback(_to, _value, _data);

 }

 return true;

}

Recommendation

The TransferAndCallToken standard draft seems to be still under discussion or
abandoned. If there are remaining efforts to turn the draft into a standard, we
recommend renaming the event to distinguish it easily from the ERC20.Transfer

event.

https://github.com/ethereum/EIPs/issues/677

6.8 Unnecessary reset of callHookData

Description

callHookData is overridden with bytes("") even though it is not used as the call to
getExternalCall discards the returned data value unconditionally.

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1ArbitrumGateway.so
l:L112-L120

https://github.com/ethereum/EIPs/issues/677

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 63/81

if (callHookData.length != 0) {

 // callHookData should always be 0 since inboundEscrowAndCall is disabled

 callHookData = bytes("");

}

// we ignore the returned data since the callHook feature is now disabled

(_to,) = getExternalCall(exitNum, _to, callHookData);

inboundEscrowTransfer(_token, _to, _amount);

The silent reset of the callHookData value has the potential to shadow
misconfiguration and potential system errors.

6.9 L1ArbitrumGateway - outboundTransfer Consider

checking _from != address(0x0)

Description

On the L1 gateway, _from addresses are allowed to be zero.

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1ArbitrumGateway.so
l:L197-L209

bytes memory extraData;

{

 uint256 _maxSubmissionCost;

 if (super.isRouter(msg.sender)) {

 // router encoded

 (_from, extraData) = GatewayMessageHandler.parseFromRouterToGateway(_da
 } else {

 _from = msg.sender;

 extraData = _data;

 }

 // user encoded

 (_maxSubmissionCost, extraData) = abi.decode(extraData, (uint256, bytes));

 // the inboundEscrowAndCall functionality has been disabled, so no data is al

Recommendation

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 64/81

Consider adding a safety check to ensure that the decoded _from address is not
address(0x0) , which should never happen.

6.10 GatewayRouter - Revert early if gateway is disabled

Description

GatewayRouter.getGateway may return 0x0 if the token gateway is disabled. In this
case, the method will continue until the implicit isContract check by the solidity
type system at ITokenGateway(gateway).outboundTransfer() fails, wasting gas encoding
the gateway message.

Examples

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/libraries/gateway/GatewayRouter.sol:L78-
L102

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 65/81

function outboundTransfer(

 address _token,

 address _to,

 uint256 _amount,

 uint256 _maxGas,

 uint256 _gasPriceBid,

 bytes calldata _data

) public payable virtual override returns (bytes memory) {

 address gateway = getGateway(_token);

 bytes memory gatewayData = GatewayMessageHandler.encodeFromRouterToGateway(
 msg.sender,

 _data

);

 emit TransferRouted(_token, msg.sender, _to, gateway);

 return
 ITokenGateway(gateway).outboundTransfer{ value: msg.value }(

 _token,

 _to,

 _amount,
 _maxGas,
 _gasPriceBid,

 gatewayData

);
}

code/packages/arb-bridge-
peripherals/contracts/tokenbridge/libraries/gateway/GatewayRouter.sol:L115
-L129

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 66/81

function getGateway(address _token) public view virtual returns (address gatewa
 gateway = l1TokenToGateway[_token];

 if (gateway == ZERO_ADDR) {

 // if no gateway value set, use default gateway

 gateway = defaultGateway;

 }

 if (gateway == DISABLED || !gateway.isContract()) {

 // not a valid gateway

 return ZERO_ADDR;
 }

 return gateway;

}

Recommendation

Consider explicitly requiring that gateway != ZERO_ADDR in outboundTransfer .

6.11 Informational: L1-L2 address aliasing may break with
solidity >= 0.8.x

Description

Due to implicit overflow checks, the L1-L2 and L2-L1 address aliasing will break
when upgrading to solidity 0.8.x or later.

code/packages/arb-bridge-
eth/contracts/libraries/AddressAliasHelper.sol:L28-L30

function applyL1ToL2Alias(address l1Address) internal pure returns (address l2A
 l2Address = address(uint160(l1Address) + offset);

}

6.12 Missing NatSpec

Description

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 67/81

Some external functions don’t have NatSpec annotations. To quote the Solidity
documentation: “It is recommended that Solidity contracts are fully annotated
using NatSpec for all public interfaces (everything in the ABI).”

Recommendation

We strongly recommend adding NatSpec annotations to at least every contract
and every public or external function. Furthermore, critical internal and private
functions should be documented with NatSpec to increase maintainability and
reduce the potential for future developer errors. NatSpec documentation should
primarily be enforced in the sensitive and complex components, such as proof-
and challenge-related smart contracts.

6.13 Separation of concerns in the Challenge.timeout
function

Description

The Challenge.timeout function currently serves two use cases. On the one hand,
it is used to handle the case of a non-responsive counterparty; on the other
hand, it is used to determine the winner of a challenge. The winner is selected
by setting the contract’s challengeState to zero, which effectively makes it
impossible for the counterparty to respond. Consequentially, the challenge will
time out, and a subsequent call to timeout will determine the winner.

In the latter case, the contract will emit the respective timeout events (
AsserterTimedOut or ChallengerTimedOut). These events can be misleading in the case

of a challenge that has determined a clear protocol violation.

Examples

code/packages/arb-bridge-eth/contracts/challenge/Challenge.sol:L330-L341

https://docs.soliditylang.org/en/v0.8.4/style-guide.html#natspec

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 68/81

function timeout() external override {

 uint256 timeSinceLastMove = block.number.sub(lastMoveBlock);

 require(timeSinceLastMove > currentResponderTimeLeft(), TIMEOUT_DEADLINE);

 if (turn == Turn.Asserter) {

 emit AsserterTimedOut();

 _challengerWin();

 } else {

 emit ChallengerTimedOut();

 _asserterWin();

 }

}

Recommendation

We recommend separating the concerns served by the timeout functions to
clarify whether an actual timeout has occurred or the system has determined a
winner. Separate functions will future-proof the code and reduce the potential
for developer errors as currently changes to one concern might affect the other
and result in unintended side effects.

6.14 Avoid unnecessary intermediary casts

Description

The intermediary cast to bytes20() can be omitted.

uint256(uint160(address(0x03))) == uint256(uint160(bytes20(address(0x03))))

true

Examples

code/packages/arb-bridge-eth/contracts/bridge/Outbox.sol:L253-L254

uint256(uint160(bytes20(l2Sender))),

uint256(uint160(bytes20(destAddr))),

code/packages/arb-bridge-
eth/contracts/bridge/Old_Outbox/OldOutbox.sol:L236-L237

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 69/81

uint256(uint160(bytes20(l2Sender))),

uint256(uint160(bytes20(destAddr))),

code/packages/arb-bridge-eth/contracts/rollup/RollupEventBridge.sol:L64-
L64

uint256(uint160(bytes20(owner))),

code/packages/arb-bridge-eth/contracts/rollup/RollupEventBridge.sol:L88-
L88

uint256(uint160(bytes20(asserter)))

code/packages/arb-bridge-eth/contracts/rollup/RollupEventBridge.sol:L105-
L105

uint256(uint160(bytes20(staker))),

code/packages/arb-bridge-eth/contracts/bridge/Inbox.sol:L301-L302

uint256(uint160(bytes20(excessFeeRefundAddress))),

uint256(uint160(bytes20(callValueRefundAddress))),

There might be more occasions of this and similar casting issues.

6.15 Inbox - Input validation

Description

If Inbox.initialize() is called with _bridge = address(0x0) the contract is effectively
left uninitialized and it can be claimed by anyone. The lack of validation during
initialization becomes a problem if the BridgeCreator is not set up in the Inbox . If
the function is fed erroneous inputs, then the contract may be left initializable

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 70/81

by anyone. The same issue occurs if the contract is deployed but not initialized
in the same transaction.

code/packages/arb-bridge-eth/contracts/bridge/Inbox.sol:L48-L52

function initialize(IBridge _bridge, address _whitelist) external {

 require(address(bridge) == address(0), "ALREADY_INIT");

 bridge = _bridge;

 WhitelistConsumer.whitelist = _whitelist;

}

Another example:

code/packages/arb-bridge-eth/contracts/bridge/SequencerInbox.sol:L55-
L65

function initialize(

 IBridge _delayedInbox,

 address _sequencer,

 address _rollup

) external {

 require(address(delayedInbox) == address(0), "ALREADY_INIT");

 delayedInbox = _delayedInbox;

 isSequencer[_sequencer] = true;

 rollup = _rollup;

 // it is assumed that maxDelayBlocks and maxDelaySeconds are set by the rollu
}

Recommendation

We recommend checking for misconfiguration, especially when it might be left
unnoticed in the worst case. Check for valid inputs and revert otherwise.

6.16 Wrap MerkleLib to avoid risk of incorrect usage

Description

MerkleLib is a low-level component used for the generation of Merkle tree roots
and the verification of Merkle proofs. It is used, for example, in Outbox and
ChallengeLib . However, correct library usage requires knowledge of its subtleties,

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 71/81

and currently, outside business logic has to perform necessary actions and
checks to obtain accurate results.

Examples

For example, an extra round of leaf hashing can be necessary to make it
impossible to prove non-leaves. That is implemented in Outbox :

code/packages/arb-bridge-eth/contracts/bridge/Outbox.sol:L204-L205

// Hash the leaf an extra time to prove it's a leaf

bytes32 calcRoot = calculateMerkleRoot(proof, path, item);

code/packages/arb-bridge-eth/contracts/bridge/Outbox.sol:L264-L270

function calculateMerkleRoot(

 bytes32[] memory proof,

 uint256 path,

 bytes32 item

) public pure returns (bytes32) {

 return MerkleLib.calculateRoot(proof, path, keccak256(abi.encodePacked(item
}

Similarly, intricacies that prevent spending the same output repeatedly, as in the
following lines, have to be taken care of in business logic – where they distract
and can easily be forgotten:

code/packages/arb-bridge-eth/contracts/bridge/Outbox.sol:L201-L202

require(proof.length < 256, "PROOF_TOO_LONG");

require(path < 2**proof.length, "PATH_NOT_MINIMAL");

Recommendation

We recommend adding a lightweight wrapper, e.g., internal methods or small
utility methods in the library itself, to take care of these details and ensure
correct usage. Business logic code shouldn’t (have to) be concerned with low-
level details of the Merkle tree implementation.

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 72/81

6.17 Simplify RollupUser.removeOldZombies

Description

Stakers that have lost a challenge become Zombies. The list of zombies is stored
in an array where new ones are appended to the end. When a particular zombie
(given via its array index i) is removed from the list, the RollupCore.removeZombie

function takes care of this by copying the last element to position i and then
deleting the last element from the array.

The RollupUser.removeOldZombies function is implemented as follows:

code/packages/arb-bridge-eth/contracts/rollup/facets/RollupUser.sol:L409-
L425

/**

 * @notice Remove any zombies whose latest stake is earlier than the first unreso
 * @param startIndex Index in the zombie list to start removing zombies from (to
 */

function removeOldZombies(uint256 startIndex) public onlyValidator whenNotPause
 uint256 currentZombieCount = zombieCount();

 uint256 firstUnresolved = firstUnresolvedNode();

 for (uint256 i = startIndex; i < currentZombieCount; i++) {

 while (zombieLatestStakedNode(i) < firstUnresolved) {

 removeZombie(i);

 currentZombieCount--;

 if (i >= currentZombieCount) {

 return;

 }

 }

 }

}

The inner loop (while) is necessary because of the mechanism described above:
The i-th element in the array gets replaced with a different one, so the same
index must be rechecked.

Recommendation

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 73/81

The code can be simplified and made more elegant by running back through
the array. An inner loop is not necessary in this case.

6.18 No support for staking tokens with missing-return-value
bug

Description and Recommendation

Currently, ERC-20 tokens that exhibit the missing-return-value bug can’t be
utilized as staking tokens. Even if there are no immediate plans to use such a
token for staking, it might be advisable to employ OpenZeppelin’s SafeERC20

library regardless. It is reasonably lightweight, and using it means there is one
less thing to worry about in selecting staking tokens.

Appendix 1 - Files in Scope
This audit covered the following files:

File SHA-1 hash

./arb-bridge-eth/contracts/bridge/Bridge.sol
93e2393faf941062adca2720
552189ea7b0b776d

./arb-bridge-eth/contracts/bridge/BridgeUtils.sol
e2965d0678a1aecdf4e57232
8cdd29220512a5ff

./arb-bridge-eth/contracts/bridge/Inbox.sol
b65c9d3c4fa775315df2429a
bfcde02cb3a159a9

./arb-bridge-eth/contracts/bridge/interfaces/IBridge.sol
5157793467d1e99559538001
4cd951f9c659e1fd

./arb-bridge-eth/contracts/bridge/interfaces/IInbox.sol
5c027c1de6c0243872bc2f50
0661d5361b30955a

./arb-bridge-
eth/contracts/bridge/interfaces/IMessageProvider.sol

a0a1cb67a6cde81872696782
ca44b295ec338cf7

./arb-bridge-eth/contracts/bridge/interfaces/IOutbox.sol
b7951b6cc18a0ede82e9cbf2
823d831c4825be8f

./arb-bridge-
eth/contracts/bridge/interfaces/ISequencerInbox.sol

086e40fc050162385e984412
2e2becce951710a7

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 74/81

File SHA-1 hash

./arb-bridge-eth/contracts/bridge/Messages.sol
b8b738d6eb666463061190c4
0e2a4c48387b1de3

./arb-bridge-eth/contracts/bridge/Old_Outbox/OldOutbox.sol
c84d1d55a4de52f9810b96a2
092059b7f7412db6

./arb-bridge-
eth/contracts/bridge/Old_Outbox/OutboxEntry.sol

defa40eefdbcaf820e5f3b89
56c65fe7d6114bde

./arb-bridge-eth/contracts/bridge/Outbox.sol
4426e477bc98e5e601c45ed1
a0e2a33d42465250

./arb-bridge-eth/contracts/bridge/SequencerInbox.sol
89389a7351677a991b2810c1
b28a7f4454628337

./arb-bridge-eth/contracts/challenge/Challenge.sol
9ff8d75c7ae098760da1ff22
166fbbc83d37a027

./arb-bridge-eth/contracts/challenge/ChallengeFactory.sol
4c9e42698bdde13b492fef54
2896c32627384e8e

./arb-bridge-eth/contracts/challenge/ChallengeLib.sol
3eb4e47656541dbd64599121
2c5e68a3bdc3b090

./arb-bridge-eth/contracts/challenge/IChallenge.sol
162ab8957a2669cfa5960fb7
123b441e6fce4695

./arb-bridge-eth/contracts/challenge/IChallengeFactory.sol
8dff43bf6729e7998538b725
55de9470c41b6fe0

./arb-bridge-eth/contracts/interfaces/IERC20.sol
b8c66b824249a9b96a99a09e
6f8d710024bfb0c5

./arb-bridge-eth/contracts/interfaces/IERC721.sol
b681dfb98e9be01e13db73b2
474ec3441b3c8d0c

./arb-bridge-
eth/contracts/libraries/AddressAliasHelper.sol

bfba5264dc28571e1410bd96
e277a4c161a4cf87

./arb-bridge-eth/contracts/libraries/BytesLib.sol
7accb367a0ba0685684e680a
4468016e56c7fa7f

./arb-bridge-eth/contracts/libraries/Cloneable.sol
184733ee25e2015bdbf18e9d
9bd691feff2540c6

./arb-bridge-eth/contracts/libraries/DebugPrint.sol
f278c15184cf0734a871e182
033076109c52148a

./arb-bridge-eth/contracts/libraries/ICloneable.sol
164fa954ca37c543cb9767a5
ec978a721d6979d2

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 75/81

File SHA-1 hash

./arb-bridge-eth/contracts/libraries/MerkleLib.sol
5283d977e4ce646ae59ff53a
95bce5eab0092efb

./arb-bridge-eth/contracts/libraries/Precompiles.sol
b6542c905b4ba1ec64146b0b
44e0d9f7006dc019

./arb-bridge-eth/contracts/libraries/ProxyUtil.sol
784a36a01ddbe0b6dc0f529e
ea3c2364c638e4fe

./arb-bridge-eth/contracts/libraries/Whitelist.sol
3d24c1e7c6a94d7cac214218
74dfaf36db337ed3

./arb-bridge-eth/contracts/rollup/BridgeCreator.sol
44564170e2ebd3ce3a6f6df2
ee4523bf1fa508cb

./arb-bridge-eth/contracts/rollup/facets/IRollupFacets.sol
4d6cebbcb4756f183f78b772
316a6bee3552e3be

./arb-bridge-eth/contracts/rollup/facets/RollupAdmin.sol
60c7d222e39de09a8dc1a0fd
ca08df2e53d4e69c

./arb-bridge-eth/contracts/rollup/facets/RollupUser.sol
45cd2c21314e481a9e4d491c
8a5d1bf21cd5e503

./arb-bridge-eth/contracts/rollup/INode.sol
4111917ba6d2a1b0d62391b6
748042e894a0c2d2

./arb-bridge-eth/contracts/rollup/INodeFactory.sol
e91b8401316cb0cafa82b8b2
389d7f57733a8b8c

./arb-bridge-eth/contracts/rollup/IRollupCore.sol
3550563fd6467f64e3c5c4b0
a1084b5c9dd86986

./arb-bridge-eth/contracts/rollup/Node.sol
890c9b1120c8aaff6a357e9e
f125bef0a0ac7636

./arb-bridge-eth/contracts/rollup/NodeFactory.sol
0b887736130286f19935f4df
6c9170f6bc71421e

./arb-bridge-eth/contracts/rollup/Rollup.sol
c7c2f1fc48764799ffaddee6
2c1ce33fe82171ff

./arb-bridge-eth/contracts/rollup/RollupCore.sol
41d03f30f2fdfc00d833d0a4
7fcce3cb8f05b2b1

./arb-bridge-eth/contracts/rollup/RollupCreator.sol
8590e6b9e85c140ac62640c5
36a814beabc01fe0

./arb-bridge-eth/contracts/rollup/RollupEventBridge.sol
d952ccbdd586c4f82c1827ff
ef695bf1c3f28a95

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 76/81

File SHA-1 hash

./arb-bridge-eth/contracts/rollup/RollupLib.sol
2ed0d83e1abe3ac6cee043d0
b7e5a8657ce37c79

./arb-bridge-eth/contracts/validator/GasRefunder.sol
7944e4371f32fc2db3928f29
66dbbfa43f4e06d6

./arb-bridge-eth/contracts/validator/IGasRefunder.sol
a571f9d4dc8cf0619aa5cd08
58921b49b0f074ab

./arb-bridge-eth/contracts/validator/Validator.sol
e651af45af3c026f55e176aa
5b4efd3767200366

./arb-bridge-eth/contracts/validator/ValidatorUtils.sol
c42acb3c032b28c56d16e37d
c99d950459706ce0

./arb-bridge-
eth/contracts/validator/ValidatorWalletCreator.sol

88e1a057d19b29da6a2896d3
8286e595b3b286f1

./arb-bridge-peripherals/contracts/rpc-
utils/NodeInterface.sol

d96c394907ccfc429b821622
311a764e0c686dcf

./arb-bridge-peripherals/contracts/rpc-
utils/RetryableTicketCreator.sol

748f56e1ab2bb151bd189f97
6b0921dade091095

./arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2Arbit
rumGateway.sol

bf75a595767cb8a9965d835c
264881acd7763bed

./arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2Custo
mGateway.sol

b2fd8683ffdfb14a9ba39fe9
be350642025cf1b2

./arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2ERC20
Gateway.sol

711d7005ce3584ab2bcd1434
027d5c710a2f2017

./arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2Gatew
ayRouter.sol

4c4653650c55ee05b0602e65
e8bf41d3a281249a

./arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/gateway/L2WethG
ateway.sol

7839ab0ddc58df9ba6928fe7
bd41226b3c818bd2

./arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/IArbToken.sol

d4b4a121017677644a365291
0de98a13c1857c16

./arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/L2ArbitrumMesse
nger.sol

174aeb41169695e06d940094
d01853089f03c322

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 77/81

File SHA-1 hash

./arb-bridge-
peripherals/contracts/tokenbridge/arbitrum/StandardArbERC2
0.sol

8439da26324d9992938106a8
4e0950b71db97a60

./arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1Arbit
rumExtendedGateway.sol

050658adc210b92119da8ff6
1cd01001413a2266

./arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1Arbit
rumGateway.sol

61541aff960b601c4ca3f916
7419d666dc6d94db

./arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1Custo
mGateway.sol

77940b0b83d3d390de75cc23
4bb7949c7bdf50a9

./arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1ERC20
Gateway.sol

f51e1a6659fe9363ac0e31b9
3328f5f076e2017e

./arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1Gatew
ayRouter.sol

cbe8dae31b0fa20253ee8c58
9b681d458cefc8a4

./arb-bridge-
peripherals/contracts/tokenbridge/ethereum/gateway/L1WethG
ateway.sol

15da456d645429983315c945
382577833f1876c3

./arb-bridge-
peripherals/contracts/tokenbridge/ethereum/ICustomToken.so
l

f7116d31844a88ce20720a2d
8871d7fb18c771eb

./arb-bridge-
peripherals/contracts/tokenbridge/ethereum/L1ArbitrumMesse
nger.sol

3c804f79c0eda3dd891ed7ac
d8ef44efae3e177d

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/aeERC20.sol

bf6f376401531087b81162f4
ae5ca70668f5f3af

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/aeWETH.sol

87b5ee486a16fd07195c0484
6fa3bd7c51fcb4b4

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/BytesParser.so
l

4c6d4adacdec602b67e11120
10398ece069827d3

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/ClonableBeacon
Proxy.sol

a400f3ffd54b8453c9b2c997
dc5006ba3c1e1430

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 78/81

File SHA-1 hash

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/gateway/Gatewa
yMessageHandler.sol

ed6e9dad3b5bd42f0c21e68c
85c984dfad2c3430

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/gateway/Gatewa
yRouter.sol

af9f416663cf0cedf50d7e20
7e40cd99db66f33f

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/gateway/ICusto
mGateway.sol

7784fd0f65eedf96f8d633b5
4ebcb694aa05fcf8

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/gateway/IToken
Gateway.sol

fb765bfd9b0161acfeadb03c
7ac6fe7a04a49c5c

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/gateway/TokenG
ateway.sol

849188128bf0252a505bfb3e
4905a95c2dd36467

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/ITransferAndCa
ll.sol

164bd08878a2af787278c36c
cbfb1688f1bc250e

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/IWETH9.sol

7e42b516352562dce8c03ff4
ae879e153861a32f

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/L2GatewayToken
.sol

58732dac2ce839694d23e7f1
009f5f366f575fdd

./arb-bridge-
peripherals/contracts/tokenbridge/libraries/TransferAndCal
lToken.sol

610eb1ec2532fdea39f1825e
2b64150c6338991c

Appendix 2 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more
clients (the “Clients”) for performing the analysis contained in these reports (the
“Reports”). The Reports may be distributed through other means, including via
ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or
team, and the Reports do not guarantee the security of any particular project.
This Report does not consider, and should not be interpreted as considering or

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 79/81

having any bearing on, the potential economics of a token, token sale or any
other product, service or other asset. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.
No Report provides any warranty or representation to any Third-Party in any
respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such
business. No third party should rely on the Reports in any way, including for the
purpose of making any decisions to buy or sell any token, product, service or
other asset. Specifically, for the avoidance of doubt, this Report does not
constitute investment advice, is not intended to be relied upon as investment
advice, is not an endorsement of this project or team, and it is not a guarantee
as to the absolute security of the project. CD owes no duty to any Third-Party by
virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within
the scope of our review within this report. Any Solidity code itself presents
unique and unquantifiable risks as the Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not
extend to the compiler layer, or any other areas beyond specified code that
could present security risks. Cryptographic tokens are emergent technologies
and carry with them high levels of technical risk and uncertainty. In some
instances, we may perform penetration testing or infrastructure assessments
depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best practices
in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext
or other computer links, gain access to web sites operated by persons other
than ConsenSys and CD. Such hyperlinks are provided for your reference and
convenience only, and are the exclusive responsibility of such web sites' owners.
You agree that ConsenSys and CD are not responsible for the content or
operation of such Web sites, and that ConsenSys and CD shall have no liability

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 80/81

Request a Security Review Today
Get in touch with our team to request a quote for a smart contract audit.

A U D I T S

F U Z Z I N G

S C R I B B L E

B L O G

T O O L S

R E S E A R C H

Subscribe to Our Newsletter
Stay up-to-date on our latest offerings,
tools, and the world of blockchain
security.

to you or any other person or entity for the use of third party Web sites. Except
as described below, a hyperlink from this web Site to another web site does not
imply or mean that ConsenSys and CD endorses the content on that Web site or
the operator or operations of that site. You are solely responsible for
determining the extent to which you may use any content at any other web sites
to which you link from the Reports. ConsenSys and CD assumes no
responsibility for the use of third party software on the Web Site and shall have
no liability whatsoever to any person or entity for the accuracy or completeness
of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of
the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

CONTACT US

https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/blog/
https://consensys.net/diligence/tools/
https://consensys.net/diligence/research/
https://consensys.net/diligence/about/
https://consensys.net/diligence/contact/

11/22/22, 2:13 PM Arbitrum Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/awag7hx1lzb672/#token-bridge 81/81

A B O U T

C O N TA C T

C A R E E R S

P R I VA C Y
P O L I C Y

Email*

e-mail address

→

https://consensys.net/diligence/about/
https://consensys.net/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
https://consensys.net/diligence/privacy-policy/
https://consensys.net/

